
Test 2

Fall 2011 Test 2
CSE1310
Section 004
Tuesday, November 15, 2011
Dr. Tiernan

Name: Key/Notes
 Section: 004
Student ID: 1000

Read These Instructions!

1. Fill in your name and the rest of your ten-digit student ID above.

2. This is a CLOSED book, OPEN notes (as specified in the e-mail sent to all students), NO CALCULATOR test. No digital electronics of any sort are allowed to be used during the test.

3. The test is worth a total of 100 points. The value for each question is given either at the top of that section of questions or in curly braces to the right hand side of the question. There are extra credit questions at the end of the test worth an additional 10 points total.

4. If you do not understand a question, raise your hand and the proctor will come over for you to ask about it. The proctor may or may not answer your question but you should still ask.

5. In questions where I have given you code to use, if you find typos, assume that the code is SUPPOSED to work and just indicate what assumption you made for your answer. This applies in all cases unless the question is specifically about the syntax of the code or errors in the code - in which case there are errors on purpose. I tested the code in IDLE so it worked before using it in the test (and then modifying some of it.)

6. I will always try to give partial credit so the more of your work that you show, the more I am able to grade for partial credit if the answer is not entirely correct. It is to your benefit to show your work on the test. Partial work also includes answering part of the question but not all of it.

7. Don’t get stuck on a question. If you don’t know what to do after thinking about it for a minute and a half, then go on to another question or raise your hand and ask something. You can always go back to questions you skip.

NO CHEATING!

1.
Write a Python function called inputdate that asks the user to enter a date. Get the day, month and year and error check these values. Assume that all months have 31 days (to simplify the error checking). Return three numeric values from the function in the order day, month, year.
{18}

def inputdate():

 print "This functions lets you enter a date and checks it"

 valid = False

 while not valid:

 mo = input("Please enter the month as an integer from 1 to 12: ")

 day = input("Please enter the day as an integer as appropriate: ")

 yr = input("Please enter the year as a four digit integer: ")

 if (type(mo) == int) and (type(day) == int) and (type(yr) == int) and \

 (1 <= mo <= 12) and (1 <= day <= 31) and (0 <= yr <= 9999):

 print "Your date ",mo,"/",day,"/",yr," is valid"

 return day, mo, yr

 else:

 print "Please re-enter a date that is valid"

def inputdate2():

 print "This functions lets you enter a date and checks it"

 mo = input("Please enter the month as an integer from 1 to 12: ")

 day = input("Please enter the day as an integer as appropriate: ")

 yr = input("Please enter the year as a four digit integer: ")

 if (type(mo) == int) and (type(day) == int) and (type(yr) == int) and \

 (1 <= mo <= 12) and (1 <= day <= 31) and (0 <= yr <= 9999):

 print "Your date ",mo,"/",day,"/",yr," is valid"

 return day, mo, yr

 else:

 print "Your date is invalid. Returning 0, 0, 0 "

 return 0, 0, 0

 1a) What value(s) would you use to represent that an error was returned from the inputdate function? Why would you use those values and how many would you use?
{8}

No error values were needed in the version above. If it was written to return an error value, I would use 0,0,0 to indicate invalid data since 0 is not valid for any of the data values.

1b) If inputdate were to do real error checking on the number of days in the month, i.e. January should have 31, February should have 28 or 29 in a leap year, etc., what algorithm would you need to use to check these values? Write your answer in words not in Python code.
{12}

If the month is Sept., April, June, or Nov., (9, 4, 6, 11)

then check to make sure it has 30 days or less

Else if month is Jan., Mar., May, July, Aug., Oct. or Dec., (1, 3, 4, 7, 8, 10, 12)

then check to make sure it has 31 days or less

Else if year is NOT divisible by 4 or if year IS divisible by 100, (mo is 2, not a leap year)

then check to make sure mo has 28 days or less

Else

check to make sure the month has 29 days or less. (mo is 2 and leap year)
 1c) If you rewrote this inputdate function with the real error checking as discussed in the previous question, would this be a useful function? Why or why not?
{6}

Yes because dates are common input so a pre-built function to verify the validity of a date would be helpful.
 1d) Describe at least three different tests you would do to verify that the inputdate function with real error checking correctly validates input values. Explain why you would do each of those tests.
{12}

Examples:

I would test mo/day/yr values as follows:

-1 / 5 / 1999 to check that month checking works for values out of range

9 / 3.4 / 2010 to check that type checking works

9 / 42 / 2010 to check day range verification
2.
Write a Python program that asks a user to enter the birthdates and ages of their family members using the inputdate function previously defined (do not rewrite that code, just call that function). Then write that birthdate, ages and name data to a file so that each line of the file has the form:

 day_int month_int year_int age_int name_string

where the four numbers are stored as integer data types and the name is stored as a string. Allow the user to enter as many dates as desired

{18}

import pickle #assume inputdate is defined where it is visible

print "This program will let the user enter birthdate, age and name for multiple people "

keepgoing = True

howmany = 0

outfile = open("dateage.txt","w")

while keepgoing:

 name = raw_input("Please enter the name of the person whose birthday you will enter: ")

 print "Now you can give me ",name,"'s birthday "

 d, m, y = inputdate()

 print "Finally, ",name,"'s age is: ",

 age = input()

Next section checks age for reasonableness

 numyears = 2011 - y

 if numyears - 1 <= age <= numyears:

 print "age is reasonable for given birthdate "

 else:

 print "age is not reasonable for given birthdate "

 yn = raw_input("If you wish to enter more names, type Y. If not, type N ")

 if yn == 'N':

 keepgoing = False

 pickle.dump(d, outfile)

 pickle.dump(m, outfile)

 pickle.dump(y, outfile)

 pickle.dump(age, outfile)

 pickle.dump(name, outfile)

 howmany += 1

outfile.close()

Below here is verifying file contents but not required

outfile = open('dateage.txt','r')

while howmany > 0:

 day = pickle.load(outfile)

 mo = pickle.load(outfile)

 yr = pickle.load(outfile)

 ag = pickle.load(outfile)

 nm = pickle.load(outfile)

 print "The data stored in outfile is for ",nm," age ",ag\

 ," with birthday ",mo,"/",day," / ",yr

 howmany -= 1

outfile.close()

3.
Give at least three examples of real-world situations where a Python dictionary would be a reasonable way to store the data if you were writing a program to manage that situation. State the purpose of the dictionary in each example and why a dictionary is better than a string or list or something else.
{12}

4. What does the function fun below do if panic is a list of values? Don’t describe the code, describe the purpose of the function, i.e. what does it accomplish?
{14}

def fun(panic, arthur, zaphod):

 if zaphod >= 0:

 if panic[zaphod] < panic[arthur]:

 return fun(panic, arthur, zaphod-1)

 else:

 return zaphod + 1

 else:

 return 0

Looks for a location called zaphod where the value at that location, panic[zaphod], is greater than or equal to the value at panic[arthur].

If it finds such a location, it returns zaphod+1

If no such value exists, then the function returns a location 0.
Extra Credit questions:

XC1. Describe and give examples of at least two string methods built into Python
{4}

XC2. Given an input value that is a positive integer, write a recursive function that calculates the sum of all the numbers from 1 up to and including the input integer, i.e. if the user inputs 4 your function should recursively add the numbers 1 + 2 + 3 + 4 and return the sum of 10. You do NOT need to do any error checking on the input.

{4}

def recursum(k):

 if k > 1:

 return k + recursum(k-1)

 else:

 return 1

XC3.
Write a limerick about the Python programming language or Monty Python.

{ANY answer will receive 2 points}
{2}

CSE 1310
Fall 2011
Pg. 7 of 7

