CSE1320
Test 1
Section 002

Fall 2009 Test 1 Redo

CSE1320
Section 002

Monday, Oct 12, 2009
Dr. Tiernan

Name:

Section:

002

Student ID:
 1000

Instructions:

1.
Fill in your name and the rest of your ten-digit student ID above.

2.
This is a OPEN book, OPEN notes, NO CALCULATOR test. No digital electronics of any sort are allowed to be used during the test.

3.
The test is worth a total of 100 points. The value for each question is given either at the top of that section of questions or in curly braces to the right hand side of the question. There are extra credit questions at the end of the test worth an additional 10 points total.

4. If you do not understand a question, raise your hand and the proctor will come over for you to ask about it. The proctor may or may not answer your question but you should still ask.

5. In questions where I have given you code to use, if you find typos, assume that the code is SUPPOSED to work and just indicate what assumption you made for your answer. This applies in all cases unless the question is specifically about the syntax of the code - in which case there are errors on purpose.

6. I will always try to give partial credit so the more of your work that you show, the more I am able to grade for partial credit if the answer is not entirely correct. It is to your benefit to show your work on the test.
7. Don’t get stuck on a question. If you don’t know what to do after thinking about it for a minute and a half, then go on to another question or raise your hand and ask something. You can always go back to questions you skip.
NO CHEATING!
3. a. Below is a function that I have written that is very poorly structured and uses commands that should not be used in my class. Rewrite the part of the function below the line to remove the incorrect commands, to put all of the loop controls into the loop header commands, and to keep the same functionality. Partial work can receive partial credit.
{17}

3.b.
What value results from the call baddrt(100, 100, 100, 10, 10, 25, 0, 0, 0, 50, 100, 100, 100, 100, 10); ? {7}

3.XC. Determine what class-related action the function is doing and change the names and data types of the function and variables to reflect the type of calculation it is doing. You can list the changes you would make or you can use them in the code you write to answer the question above.
{extra credit 5}

int baddrt(int t1, int t2, int t3, int p1, int p2, int p3, int q1, int q2, int q3, int pq,

int b1, int b2, int b3, int b4, int pb)

{

int t=0, q=0, b=0, s=0, j=0, k=0, m=0;

int tall[3], pall[3], qall[3], ball[4];

tall[0] = t1; tall[1] = t2; tall[2] = t3;

pall[0] = p1; pall[1] = p2; pall[2] = p3;

qall[0] = q1; qall[1] = q2; qall[2] = q3;

ball[0] = b1; ball[1] = b2; ball[2] = b3; ball[3] = b4;

while (k >= 0)

{

t += tall[k] * pall[k];

if (k ==2)

break;

k++;

}

while(j >= 0)

{

if (qall[j] == 0)

continue;

q += qall[j++] * pq;

if (j == 3)

j = -1;

}

while(m >= 0)

{

if (ball[m] == 0)

continue;

b += ball[m] * pb;

if (m == 4)

break;

m++;

}

s = (t + q + b)/100;

exit(s);

}

4.a. Write a C function to determine which prime numbers are factors of a given test value. For your function, the input parameter will be an array of 10 test values which will be positive integers less than 100. (You can assume these are all valid without checking them.) Nothing is returned.
{7}

4.b. Your function will take these inputs and test to see which of the first 8 prime numbers (2, 3, 5, 7, 11, 13, 17, and 19) are factors of each test value. As you do the prime factor tests you will record the results in a two-dimensional array of size 10 by 8 to store the results of the 10 test values tested with 8 prime factors. The array should be declared using the constant size values for 8 and 10 given below and should be initialized to all zeros.
{8}

4.c. The function should then loop through the ten input test values and check to see if each of the 8 listed primes (in the const primes array below) are prime factors of the current test value [j]. If the prime number 2 is a factor of test value [j], then 2 should be stored into the two dimensional array at [j][k] where k is the index representing 2 in the prime array, i.e. primes[k] = 2. If the prime number 3 is a factor of test value [j], then 3 should be stored into the two dimensional array at [j][m] where m is the index representing 3 in the prime array, and so on. If a prime is not a factor then the zero should be left in the corresponding location in the 2D array.
{14}

4.d. When all the primes of all the test values have been checked and recorded, the function should print out the prime factors of each test value using a loop to go through the columns of the 2D array and only printing those values that are not zero.
{12}

#define NUMTESTVALS 10

#define TESTPRIMES 8

const int primes[] = {2, 3, 5, 7, 11, 13, 17, 19};

Extra Credit questions:

XC1. Which prototype matches the function in problem 3 and what is wrong with the others? Write your answers under each prototype.
{3}

int baddrt(int a, int b, int c, int d, int e, int f, int g, int h, int i, int j, int k, int l, int m, int n, int o, int p);

int baddrt(int l1, int l2, int l3, int l4, int p, int p1, int p2, int p3, int pq, int q1, int q2, int q3, int t1, int t2, int t3);

int baddrt(int t1, int, int t, int p1, int, int, int q2, int, int q, int, int, int, int l, int p);

XC2.
What is the smallest integer data type?
{2}

XC3.
How do you find out the size in bits of the smallest integer data type?
{3}

XC4.
What is the little tiny joke in question 3?
{ANY answer will receive two (2) points}

Page 1 of 4

Page 4 of 4

