CSE1320
Final
Section 001

Spring 2007 Final Exam

CSE1320
Section 002

Wednesday, May 9, 2007
Dr. Tiernan

Name:

Section:

001

Student ID:

Keyword:

Instructions:

1.
Fill in your name, ten-digit student ID, and section above. You may choose some keyword for yourself that I could use to anonymously post grade information. If you do not choose a keyword, I cannot post your grade information if needed.

2.
This is a OPEN book, OPEN notes, NO CALCULATOR test. No digital electronics of any sort are allowed to be used during the test.

3.
The test is worth a total of 100 points. The value for each question is given either at the top of that section of questions or in curly braces to the right hand side of the question. There are extra credit questions at the end of the test worth an additional 10 points total.

4. If you do not understand a question, raise your hand and I will come over for you to ask me about it. I may or may not answer your question but you should still ask.

5. In questions where I have given you code to use, if you find typos, assume that the code is SUPPOSED to work and just indicate what assumption you made for your answer. This applies in all cases unless the question is specifically about the syntax of the code - in which case there are errors on purpose.

6. I will always try to give partial credit so the more of your work that you show, the more I am able to grade for partial credit if the answer is not entirely correct. It is to your benefit to show your work on the test.

NO CHEATING!

1.
a)
Declare a C++ class that can contain a date. Along with the normal information for a date also include the day of the week and the number of the day of the year (January 1 is day 1; December 31 is day 365 (usually)). Be sure to include the member functions prototypes for all the data members. The number of the day of the year should be calculated by a function. Also include a public function to increment the date by one using the overloaded increment operator as a pre-increment (++date). You only need to give the class specification for this question.

{20}
1.
b)
Given the class specification you wrote in part a) write the function definitions requested below:

i.
the constructor for the date object
{8}

ii.
the function to calculate the number of the day of the year
{8}

1.
b)
continued

iii.
the setdate mutator function (be sure to include all needed error checking)
{8}

2.
For a doubly linked list in C answer the following:

a)
What must always be kept track of?
 {2}

b)
What direction can a program move through the list?
 {2}

c)
Where can data be added?
 {2}

d)
Where can data be deleted?
 {2}

e)
Is the data in the linked list randomly accessible?
 {2}
3.
Give three types of polymorphism in C++ and give a code example of each.
{9}

i.

ii.

iii.

4.
Given the class below, answer the following questions.

class Frac

{ public:

Frac();

void getFrac(int &n, int &d);

int getnum();

int getdenom();

double getdeceq();

void printFrac();

bool setFrac(int n, int d);

Frac operator *(Frac);

Frac operator +(Frac);

 private:

int num, denom;

double deceq;

}

Frac::Frac()

{
num = 0;

denom = 1;

}

bool Frac::getFrac(int &n, int &d)

{
n = getnum();

d = getdenom();

}

int Frac::getnum()
{ return num; }

int Frac::getdenom()
{ return denom; }

double Frac::getdeceq()

{
return deceq = ((double) num)/denom; }

void Frac::printFrac()

{
cout << num << “/” << denom; }

bool Frac::setFrac(int n, int d)

{
if (d == 0)

{ return false; }

else if (n < 0)

{
num = -n;

denom = -d;

}

else
{
num = n;

denom = d;

}

}

Frac Frac::operator *(Frac f2)

{
Frac pr;

pr.num = num * f2.num;

pr.denom = denom * f2.denom;

return pr;

}

4.
a)
Write the method definition for the overloaded addition operator in the Frac specification.

{6}

4.
b)
Use the class Frac above to write a main routine to declare two Frac objects, give them the values of one-fourth and two-thirds and print the two fractions and their product.
{10}

5.
Declare a struct in C to contain a date. Along with the normal information for a date also include the day of the week and the number of the day of the year (January 1 is day 1; December 31 is day 365 (usually)). Also declare and use an enumerated type to record the months of the year. Use a bit field to indicate whether it is a leap year or not.
{9}

5.
a)
For the struct above, where could data errors occur in putting values into the struct? List all the possible types of logical errors that can occur given that the user does give values that are of the correct type (int, etc.) when storing the data.
{8}

5.
b)
Would these same errors be likely to occur in the C++ date class you defined earlier? Why or why not?
{4}

Extra Credit questions - Worth two {2} points each unless stated otherwise.

XC1. Rewrite the following as a non-recursive C function.
{4 points}

int gub(int h)

{
if (h < 0)

{

cout << “Invalid input” << endl;

return -1;

}

else if (h == 0)

return ++h;

else

return h * gub(--h);

}

XC2.
Reference parameters in C++ provide the functionality of
 in C. {1}
XC3.
Using a class to instantiate an object in C++ is the same as using

 a
 to

 a
 in C.
{2}

XC4.
Methods are the
 inside a class.
{1}

XC5.
The most ridiculous thing about the C programming language is:

because:

{ANY answer will receive 2 points}

Page 2 of 9

Page 9 of 9

