CSE1320
Test 1
Section 002

Spring 2010 Test 1

CSE1320
Section 002

Thursday, Mar. 4, 2010
Dr. Tiernan

Name:
Key/Notes

Section:

002

Student ID:
 1000

Instructions:

1.
Fill in your name and the rest of your ten-digit student ID above.

2.
This is a OPEN book, OPEN notes, NO CALCULATOR test. No digital electronics of any sort are allowed to be used during the test.

3.
The test is worth a total of 100 points. The value for each question is given either at the top of that section of questions or in curly braces to the right hand side of the question. There are extra credit questions at the end of the test worth an additional 10 points total.

4. If you do not understand a question, raise your hand and the proctor will come over for you to ask about it. The proctor may or may not answer your question but you should still ask.

5. In questions where I have given you code to use, if you find typos, assume that the code is SUPPOSED to work and just indicate what assumption you made for your answer. This applies in all cases unless the question is specifically about the syntax of the code - in which case there are errors on purpose.

6. I will always try to give partial credit so the more of your work that you show, the more I am able to grade for partial credit if the answer is not entirely correct. It is to your benefit to show your work on the test.

7. Don’t get stuck on a question. If you don’t know what to do after thinking about it for a minute and a half, then go on to another question or raise your hand and ask something. You can always go back to questions you skip.

NO CHEATING!
1.a.
Describe the bubble sort algorithm in pseudocode (no more than 10 lines; don’t pseudocode the swap, just indicate that a swap function will be called.).
{4}

Given an array of n elements and wanting to sort them from smallest at location 0 to largest at n-1,

Loop for n times with index k // to make n passes through the array

Loop for n times from 0 to n-1 with index j // to compare every element in the array

// Compare the element at location j with the element at location j+1 to test each pair

If the j element is larger than the j+1 element, // if “first” element bigger than “second”

Then swap the values of the j and j+1 elements // change the order

// At end of j loop, j is incremented until it is greater than n

// At end of k loop, no more passes are needed

// When loops are complete, the array is sorted.

1.b.
What action(s) does the bubble sort do more often than the selection sort? List two or more. (Don’t write pseudocode here; answer the question in words.) Write LEGIBLY and not too small.
{3}

i. Bubble sort does more swaps

ii. Bubble sort does more comparisons each pass unless optimized

1.c.
What action(s) does it do approximately the same number of times? List two or more.
{3}

i. Mostly same number of passes through the array

ii. Mostly same number of actions after a true test result

1.d.
If the bubble sort is made as efficient in processing speed as possible, is it still less efficient than the selection sort and tell why or why not?
{3}

Generally the bubble sort would still be less efficient because, after a true test result, the swap takes more steps than the saving of the largest element, i.e. three steps for swap vs. two for saving. This is offset by the fact that the selection sort will have to do a swap AFTER all the comparisons are done instead of during. Therefore the size of the array will have major impact on the speed comparison but in general selection sort will be faster as the array grows larger.

2.
Assume a friend of yours wanted you to write a piece of music system software for them to allow them type in information about their favorite songs/pieces of music and then be able to sort that music by (at least) the title of the pieces, the name of their favorite performer(s) of that song, the year it was performed, how long the song is in minutes and seconds, and how much they paid for the song. Write at least five questions you would need to ask your friend about this project in order to begin writing the project specifications. Write LEGIBLY and not too small.
{15}

i.
Examples:

Exactly how will the title be entered?

Will you search on first and last names of performers?

Can names be band/group names or just names of people?

How will you want the data to be able to be sorted?

What questions do you want to be able to answer with the data in this system?

How do you plan to use this system? (ex. find songs to make exactly 10 minutes of music solid…)

What do you see as the purpose of this system?

How many songs should the system be able to hold?

How long can titles or names be in your system?

-- Questions should be getting more details from the user in order to specify the system. --

ii.

iii.

iv.

v.

3.a.
Assuming that you are now coding the music system referred to in the previous question, declare a single multi-dimensional array to hold at least two different pieces of data given in the music system question above. Use constants to define the meanings of the indices for the different pieces of data you are putting in the array. Be sure to declare the constants before the array.
{8}

#define TIME 0

#define PAID 1

#define MAX 10000 // maximum songs in array

float songdata[2][MAX];
3.b.
Using the two-dimensional array and the constants you just declared, write a short code fragment to print out all the values of one of the pieces of data from the multi-dimensional array.
{6}

// assume index variable c is declared

for (c = 0, c < MAX, c++)

{

printf(“\nThe cost of song %d was %f.”, c, songdata[PAID][c]);

}
4.
Give three examples to illustrate three different ways that identifiers can be created or declared such that C treats those identifiers as constants?
{7}

i.
#define FRED 50

ii.
const int FRED=50;

iii.
int FRED(int barney); // names of functions are treated as constants

int FRED[50]; // names of arrays are treated as constants too

5.
Using the data type sizes given below right above the memory block at bottom of page, do the following:

5.a.
Declare a character pointer to be stored at the beginning address in the block of memory shown. Indicate the area used by each variable by outlining the bytes that contain that variable in the memory. Put the corresponding variable names to the right of the memory block.
{6}

char *wilma;
5.b.
Use the pointer declared in part a. and write C code to allocate memory to that pointer large enough to store a string with 23 letters in it. Assume that this memory is allocated immediately after the pointer variable in memory. Put the correct value into the pointer’s area in the memory block. Indicate the area allocated by the allocation command by outlining the bytes in the memory. Put the corresponding names to the right of the memory block.
{8}

wilma = (char) malloc(sizeof(char)*24);
5.c.
Write C code using string functions to put your name (or some part that will fit) into the allocated space and then show the result in the memory area.
{5}

strcpy(wilma, “J Carter M Tiernan”);

For this problem, characters are one byte long, shorts are two bytes, ints are four bytes, pointers are four bytes, floats are six bytes, and doubles are eight bytes. Memory is byte-addressable and each little box below right represents one byte.
	Addresses
	
	
	
	
	
	
	
	
	Variable names

	CD02
	 C
	D
	0
	6
	J
	
	C
	a
	wilma

	CD0A
	 r
	t
	e
	r
	
	M
	
	T
	

	CD12
	 i
	e
	r
	n
	a
	n
	
	
	

	CD1A
	
	
	
	
	
	
	
	
	

6.a.
Below is a function that is supposed to calculate class grades for a class similar to ours. Find the errors in the code below. On a line that an error is found, write a correction to the right of the error. Errors can be syntax errors, logic errors, or errors that violate a rule in the 1320 class. Partial work can receive partial credit.

{10}

int noname(void)

{

int t=0, q=0, b=0; // not errors but bad programming practice to use one char names
int grade=0;

int j=0, k=3, m=0;

int tests[3] = {100, 85, 90};

int testvalue[3] = {10, 10, 25}; .

int quizzes[3] = {0, 10, 4};

int quizvalue= 50;

int lab value = 10; // syntax error, bad var name – labvalue
int labs[4] ;

labs = {45, 60, 79, 93}; // syntax error, illegal initialization - labs[0] = 45; labs[1]=60; labs[2]=79; labs[3]=93;
while (k >= 0) // logic error k becomes -1 in loop – (k > 0)

{

k--;

t += t + tests[k] * testvalue[k]; // logic error with t += t +… - change += to simply =

}

for (j = 0; j <= 3; j++); // logic error from 0 to 3 instead of 0 to 2 – change j <=3 to j < 3

{

if (quizzes[j] != 0)

q += quizzes[j] * quizValue; // logic error, different variable name – change to quizvalue

}

do

{

if !(labs[m] = 0) // logic error, assignment not test – change = to ==

b += labs[m] * lab value ; // syntax error, bad var name – labvalue

m++;

}

while (m <= 3);

grade * 100 = (t + q + b); // syntax error, left hand side operation – grade = (t + q + b)/100;
exit(grade); // Dr. T error – return grade;
}

7.
Below is given the Gaussian summation formula.

[image: image1.wmf]

x

x

=

m

n

å

=

[image: image2.wmf]2

/

)

(

))

1

2

/

)

((

(

))

1

2

/

)

((

((

...

))

2

(

)

2

((

))

1

(

)

1

((

)

(

m

n

m

n

n

m

n

m

n

m

n

m

n

m

-

+

-

-

-

+

-

-

+

+

+

-

+

+

+

-

+

+

+

+

[image: image3.wmf]

(

m

+

n

)

+

((

m

+

1

)

+

(

n

-

1

))

+

((

m

+

2

)

+

(

n

-

2

))

+

...

+

((

m

+

((

n

-

m

)

/

2

-

1

))

+

(

n

-

((

n

-

m

)

/

2

-

1

))

[image: image4.wmf]

x

x

=

m

n

å

=

when n + m is odd
and
when n + m is even

7.a.
Implement the Gaussian summation formula below as one recursive algorithm. Assume that m and n will be values passed to the function by the calling routine.
{10}

int gaussum(int n, int m)

{

if (m == n)

return (n - m)/2; // Actually incorrect because it should be (n+m) BUT it is wrong in my alg above too
else if ((n – m) == 1)

return ((m + ((n - m)/2 – 1)) + (n - ((n - m)/2 – 1));

else if (n > m)

return m + n + gaussum(n – 1, m + 1);

else return -1;

}
7.b.
For the Gaussian summation function that would be written for the previous problem, describe in words what m and n represent in terms of what the formula is trying to do?
{4}

The formula is summing from m to n so m is the smallest number to sum and n is the largest number to sum.
7.c.
Write three test cases to test the Gaussian summation function. Each test case should include input values for m and n along with the output that the function should produce for that input.

i.
The first test case should be expected to catch some type of error.
{4}

ii.
The second test case should test a trivial case of the function.
{2}

iii.
The third case should test any result when n – m > 10.
{2}
	case
	m value
	n value
	expected output value

	i
	10
	5
	-1 // error example

	ii
	10
	10
	m == n example

	iii
	0
	12
	78 example

Extra Credit questions:

XC1. Given code fragment below, determine the values requested.

float amah[25];

float *nanny;

float **aupair;

//Assume that values have been put into the array amah such that amah[s] = s * 1.11 ;

nanny = amah;

aupair = &nanny;

a.
What is the value of amah[36]? outside array bounds OR 36 * 1.11 =39.96
{1}

b.
What is the value of *(nanny + 12)? 12 * 1.11 = 13.32
{2}

c.
Use aupair to access the value 8.88 . (*aupair)[8] / *(*aupair + 8)
{1}

XC2.
Write the result of the following operation in binary and in decimal.

a. Write the binary result in the boxes:
{2}

	
	1
	1
	0
	0
	1
	1
	0
	0
	0
	1

	&
	1
	0
	0
	1
	1
	1
	1
	0
	1
	0

	
	1
	0
	0
	0
	1
	1
	0
	0
	0
	0

b. The equivalent decimal value is: 512 + 32 + 16 = 560
{2}

XC3. Describe in less than two sentences how you go about analyzing the lab assignments I have given in order to start developing a design, i.e. tell me how you go about understanding it so you can design your program.
{ANY answer will receive 2 points}

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Page 1 of 8

Page 8 of 8

[image: image5.wmf]

x

x

=

m

n

å

=

[image: image6.wmf]2

/

)

(

))

1

2

/

)

((

(

))

1

2

/

)

((

((

...

))

2

(

)

2

((

))

1

(

)

1

((

)

(

m

n

m

n

n

m

n

m

n

m

n

m

n

m

-

+

-

-

-

+

-

-

+

+

+

-

+

+

+

-

+

+

+

+

[image: image7.wmf]

(

m

+

n

)

+

((

m

+

1

)

+

(

n

-

1

))

+

((

m

+

2

)

+

(

n

-

2

))

+

...

+

((

m

+

((

n

-

m

)

/

2

-

1

))

+

(

n

-

((

n

-

m

)

/

2

-

1

))

_1203452914.unknown

_1329646450.unknown

_1202748596.unknown

