CSE1320
Final Exam
Section 001

Summer 2010 Final Exam

CSE1320
Section 002

Monday, August 16, 2010
Dr. Tiernan

Name:

Section:

002

Student ID:
 1000

Instructions:

1.
Fill in your name and the rest of your ten-digit student ID above.

2.
This is a OPEN book, OPEN notes, NO CALCULATOR test. No digital electronics of any sort are allowed to be used during the test.

3.
The test is worth a total of 100 points. The value for each question is given either at the top of that section of questions or in curly braces to the right hand side of the question. There are extra credit questions at the end of the test worth an additional 10 points total.

4. If you do not understand a question, raise your hand and the proctor will come over for you to ask about it. The proctor may or may not answer your question but you should still ask.

5. Since I did not give an extra credit quiz when I intended to, you can earn extra credit quiz points if you give a question that could have been used as a quiz question on the bottom of this front page. The question should be something that would have been a good pop quiz question over C++ material.

6. In questions where I have given you code to use, if you find typos, assume that the code is SUPPOSED to work and just indicate what assumption you made for your answer. This applies in all cases unless the question is specifically about the syntax of the code - in which case there are errors on purpose.

7. I will always try to give partial credit so the more of your work that you show, the more I am able to grade for partial credit if the answer is not entirely correct. It is to your benefit to show your work on the test.

8. Don’t get stuck on a question. If you don’t know what to do after thinking about it for a minute and a half, then go on to another question or raise your hand and ask something. You can always go back to questions you skip.

NO CHEATING!
1. This semester you have been required to write a design document prior to each lab assignment. Tell whether this was a habit that you already had prior to this semester and then list three things that you have learned about writing programs as a result of having to do design documents prior to the assignments themselves.

Prior habit? Explain why or why not
{3 points}

Writing a design document has helped me learn:
{9 points}

1)

2)

3)

2. Write a C macro that tests if a value is even and gives an answer that can be interpreted as true or false. (Assume that the value that is passed in to the macro is a valid number to test, i.e. you don’t need to do any error checking.)
{8 pts}

#define even(val) (val % 2)? 0 : 1

#define even(val) ((val % 2) == 0)

3.a. Write a C++ class definition to represent a UTA student including

first name,

last name,

UTA student ID number,

GPA,

number of hours completed towards a degree, and

class level (freshman, sophomore, junior, senior, fifth year).

Make the data elements private. Include function prototypes or definitions for accessor and mutator functions for each piece of data, a constructor function that takes in a first name, a last name and an ID, a display function, and a GPA update calculation function. Don’t write the actual functions (unless they are one line or so.) Use char * type for the names and a number type for the student ID. Use an enumerated type for the class level and declare the enumerated type.

{18 points}

3.b. Write the C++ display member function for the UTA student class above. Make sure to include the class scope for this member function. Based on the class value, print FR for freshman, SO for sophomore, JR for junior, SR for senior, and 5TH for a fifth year student. The output should look like the following:
{9 points}

Firstname Lastname ID: 1000999999 GPA: 9.99 Hours: 999 Class: 5TH

Extra Credit: Give the C++ output the correct formatting for the floating point number to print two decimal places and for the hours to print only three places.
{XC: 4 points}

bool UTAstudent::display()

{

cout << first << last << “ID: “ << stdtID;

ios::setwidth(4);

ios::setprecision(2);

cout << “GPA: “ << GPA;

ios::setwidth(3);

cout << “Hours: “ << hours << “Class: “;

if (class == fresh) cout << “FR”;

if (class == soph) cout << “SO”;

if (class == jun) cout << “JR”;

if (class == sen) cout << “SR”;

if (class == fifth) cout << “5TH”;

cout << endl;

}
3.c. Write the C++ constructor member function for the UTA student class that takes in a first name, a last name and an ID. Check the names to make sure their length is less than 50 and allocate only as much space as required for the names (using C++ functions). Make sure the student ID value has the form 1000xxxxxx. You can use C or C++ string functions to put the input strings into the actual private data members
{9 points}

UTAstudent::UTAstudent(char * fi, char * la, long id)

{

{if (strlen(fi) < 50)

{
first = new char [(strlen(fi) +1)];

strcpy(first, fi);

}

else

{
first = new char [50];

strncpy(first, fi,49);

first[49] = ‘\0’

}

if (strlen(la) < 50)

{
last = new char [(strlen(la) +1)];

strcpy(last la);

}

else

{
last = new char [50];

strncpy(last, la,49);

last[49] = ‘\0’

}

if ((id <= 1000999999) && (id >= 1000000000))

{
stdtID = id;

}

else

{
stdtID = 0;

}

}

4. Given the struct type and the code fragment below, write the needed lines of C (after the **) to add the current struct in between the travel and trailer structs. Make sure to connect all the pointers for the doubly linked list.
{8 points}

struct connect {

int stuff;

struct connect *forward;

struct connect *backward;

};

// functions and main declared in here

struct connect *begin, *travel, *trailer, *current;

int temp;

// other code here

current = (struct connect *) malloc (sizeof (struct connect));

current->stuff = temp; //Assume temp has been given a value

current->forward = NULL;

current->backward = NULL;

// Assume linked list starts with begin and travel is initially set to begin and trailer initially to NULL.

// Assume travel and trailer have traversed the list to where current belongs.

// Assume trailer is not NULL.

// ** Put current in between travel and trailer
current->forward = travel;

current->backward = trailer;

trailer->forward = current;

if (travel != NULL)

travel->backward = current;

class natural {

public:

natural();

bool setnnum(int n);

int getnnum() const { return nnum; };

natural operator –(natural num2);

natural operator +(natural num2);

private:

int nnum; //a natural number; i.e. integer greater than or equal to 0

};

// in the natural.cpp file

bool natural::setnnum(int n) {

if (n < 0)

{

nnum = 0;

return false;

}

else

{

nnum = n;

return true;

}

}

natural natural::operator –(natural num2) {

natural temp;

int diff;

diff = nnum – num2.nnum;

if (!temp.setnnum(diff))

{

cout << “Result is not a natural number”;

}

return temp;

}

5. Given the class and member function above for a natural number describe three things that CANNOT cause problems because of the data abstraction and encapsulation given by the class and tell why.
{12 points total; 6 pts each (2 extra credit available)}

1)

{6 points}

No negative value can be stored in a natural number because the set function will prevent that

2)

{6 points}

Subtraction of natural numbers will never return a value that is not a natural number because the overloaded operator checks for that

XC3)
{Extra credit 2 points}

6. Using C library functions and the code below write the lines of C that would be needed to do the following:
{12 points}

If ch is a number, subtract the character ‘0’ from ch and print the result as an integer.

If ch is a letter, convert it to uppercase and print it with the string “at” immediately after, i.e. Cat for ‘c’.

If ch is a punctuation mark, print the string “I say” with the punctuation mark immediately after, i.e. I say! for ch = ‘!’

If ch is anything else, print two asterisks, then ch, then two more asterisks.

char ch;

scanf(“%c”, ch);

if (isdigit(ch))

printf(“ Digit is %d “, (int) (ch – ‘0’));

else if (isalpha(ch))

printf(“ It’s at %c%s “, toupper(ch), “at”);

else if (ispunct(ch))

printf(“ I say%c “, ch);

else

printf(“**%c**”,ch);

//C++ Function prototypes

float calculate(int val1, float val2=10.0, int val3=8);

int calculate(int val1=7, int val2=9);

//Function def’ns

float calculate(int val1, float val2, int val3)

{

if (val1 < 1)

return val2 * val3;

else

return val2 * val3 + calculate(val1-1, val2, val3);

}

int calculate(int val1, int val2)

{

if (val1 < 1)

return val2 * val2;

else

return val2 * val2 + calculate(val1-1, val2-1);

}

7. Given the C++ functions above and the variables and assignments below, what is returned for the following calls?

int i1 = 3, i2 = 4, i3 = 5, ir;

float f2 = 6, fr;

7.a. fr = calculate(i1, f2);
{4 points}

float cal(int, float, --) means use the first def’n with one default value. So the call is cal(3, 6, 8). So running the recursive function gives 6*8+cal(2,6,8)=>6*8+cal(1,6,8)=>6*8+cal(0,6,8)=>6*8 which works out to 48 +48 +48 + 48 = 4 * 48 = 192.

7.b. ir = calculate(i2, i3);
{4 points}

int cal(int, int) uses the second definition. Call is cal(4,5)=>5*5+cal(3,4)=>4*4+cal(2,3)=>3*3+cal(1,2)=>2*2+cal(0,1)=>1*1 =

1 + 4 + 9 + 16 + 25 = 55
7.c. fr = calculate(i3);
{4 points}

float cal(int, --, --) gives the first def’n with two defaults cal (5, 10, 8). From 7.a. we can see that we can use first param +1 * second param * third => 6*10*8 = 480
Extra Credit questions:

XC1. Write the GPA update calculation function for the class is question 3. The function would take in the new semester’s credit hours and the new semester’s points. The function should calculate the new GPA, should save that value, and should update the total hours of credit the student has. Error check for negative values. The function must be part of the class scope.
{3}

GPA calculation is ((current GPA * current total hours) + new semester’s points) divided by (current total hours + new semester’s credit hours).

XC2.
 Write the following declaration in C code.

{3}

raku is an array of pointers to functions that take in one float parameter and return void.

XC3.
What could Dr. T have done different during the class lectures to help your understanding?
{2}

XC4. What could YOU have done differently during the semester to help your understanding?

{ANY answer will receive two (2) points}

Page 1 of 9

Page 2 of 9

