CSE1320
Test 1
Section 002

Summer 2010 Test 1

CSE1320
Section 002

Wednesday, July 7, 2010
Dr. Tiernan

Name:

Section:

002

Student ID:
 1000

Instructions:

A. Fill in your name and the rest of your ten-digit student ID above.

B. This is a OPEN book, OPEN notes, NO CALCULATOR test. No digital electronics of any sort are allowed to be used during the test.

C. The test is worth a total of 100 points. The value for each question is given either at the top of that section of questions or in curly braces to the right hand side of the question. There are extra credit questions at the end of the test worth an additional 10 points total.

D. If you do not understand a question, raise your hand and the proctor will come over for you to ask about it. The proctor may or may not answer your question but you should still ask.

E. In questions where I have given you code to use, if you find typos, assume that the code is SUPPOSED to work and just indicate what assumption you made for your answer. This applies in all cases unless the question is specifically about the syntax of the code - in which case there are errors on purpose.

F. I will always try to give partial credit so the more of your work that you show, the more I am able to grade for partial credit if the answer is not entirely correct. It is to your benefit to show your work on the test.
G. Don’t get stuck on a question. If you don’t know what to do after thinking about it for a minute and a half, then go on to another question or raise your hand and ask something. You can always go back to questions you skip.
NO CHEATING!
1.a.
What does the function bouncy below do, i.e. what task is it performing?
{4}

1.b.
How does it do this task? For example, describe what type of algorithm it is using.
{6}

1.c.
What has to be true for this function to work properly?
{3}

int bouncy(float list[MAX], float item)

{

 int check, size;
 int flag = 1;
 check = MAX/2;
 size = MAX/4;

 while (flag)

 {

 flag = 0;

 if (size == 0)

 break;

 if (list[check] > item)

 {
 check = check - size;

 size = size/2;

 flag = 1;

 continue;

 }

 if (list[check] < item)

 {

 check = check + size;

 size = size/2;

 flag = 1;

 continue;

 }

 return check;

 }
 return -1;

}

1.d.
Rewrite the code above so that all control elements are well structured and the function acts the same way as it does currently. HINT: Remove badly structured C commands but make sure the code still acts the same as if those commands were in it. You can rewrite the entire function or you can indicate which lines change and show the changes for each line you refer to. Use the space to the right of the function to do the rewrite.
{9}
2.
Use the following mathematical algorithm to answer the questions below:

If a and b are integers and a <= b,

then the sum of the numbers from a to b can be found by the formula

 (a+0 + b-0) + ((a+1) + (b–1)) + ((a+2) + (b-2)) + ...

using the following recursive algorithm:

if first term a is smaller than second b,

add a + b plus add the value returned by recursing on a+1, b-1

if the two terms a and b are equal just

return one of the terms

if the first term a is larger than the second term b,

stop

2.a.
How many input parameters would the recursive function to implement the algorithm need to have and what are they?
{4}

2.b.
What does the recursive function return?
{3}

2.c.
Write the prototype for this recursive function.
{3}

2.d.
How many bases cases does the recursive function have and what are they?
{6}

2.e.
What could be an error case for this recursive function?
{3}

2.f.

Write a recursive function to implement the mathematical algorithm (given again below)
{9}

if first term a is smaller than second b,

add a + b plus add the value returned by recursing on a+1, b-1

if the two terms a and b are equal just

return one of the terms

if the first term a is larger than the second term b,

stop

2.g.
Write a non-recursive, iterative function to implement the mathematical algorithm (given again below)

{8}

if first term a is smaller than second b,

add a + b plus add the value returned by recursing on a+1, b-1

if the two terms a and b are equal just

return one of the terms

if the first term a is larger than the second term b,

stop

3.a.
Declare a two dimensional array to hold temperature values collected once every hour for one week. Separate the data by hours and days. Assume that Sunday is day 0 and midnight is hour 0. Initialize the array to all zeros.

{6}

3.b.
Give a C statement that would store 101 as the temperature for Tuesday at 3pm using array notation.

{4}

3.c.
Give a C statement that would save 98 as the temperature for Thursday at 10am using pointer arithmetic.

{4}

3.d.
Write a code fragment to find the average temperature for the entire week using this array. Assume that the array has data already stored in it for you to average.
{6}

3.e.
What is the order notation for efficiency of the code fragment you just wrote and WHY? HINT: Imagine the efficiency if you were finding the average temperature for an entire year.
{6}

4.
Categorize each of the following as the correct type of control statement:

{2 points per blank}

if

if/else

for

assignment

do/while

function call

switch

recursion

Extra Credit questions:

XC1. Write the simple math formula for calculating the result returned by the recursive function in question 2.

{3}

XC2.
What is the largest integer data type?
{2}

XC3.
What activity should happen in every phase of the software engineering life cycle and give an example of that activity in two different phases?
{3}

XC4.
Have you tried using the lecture capture system (Echo360) in this class or another? If so, what did you think?
{ANY answer will receive two (2) points}

Page 1 of 7

Page 3 of 7

