
october 2012 | vol. 55 | no. 10 | communications of the acm 53

Thirteen years ago, Eric Raymond’s essay,
“The Cathedral and the Bazaar,”2 redefined our
vocabulary and all but promised an end to the waterfall
model and big software companies, thanks to the new
grass-roots open source software development move-
ment. I found the book thought-provoking, but it did not

convince me. On the other hand, be-
ing deeply involved in open source, I
couldn’t help but think that it would
be nice if he was right.

The book I brought to the beach
house this summer is also thought-
provoking, much more so than Ray-
mond’s book (which it even men-
tions rather positively): Frederick
P. Brooks’s The Design of Design.1
As much as I find myself nodding in
agreement and as much as I enjoy
Brooks’s command of language and
subject matter, the book also makes
me sad and disappointed.

Thirteen years ago also marks the
apogee of the dot-com euphoria, where
every teenager was a Web program-
mer and every college dropout had
a Web startup. I had genuine fun try-
ing to teach some of those greenhorns
about the good old-fashioned tricks

of the trade—test-restoring backups,
scripting operating-system installs,
version control, and so on. Hindsight,
of course, is 20/20 (that is, events may
have been less fun than you remem-
ber), and there is no escaping that the
entire dot-com era was a disaster for
IT/CS in general and for software qual-
ity and Unix in particular.

I have not seen any competent
analysis of how much bigger the IT
industry became during the dot-com
years. My own estimate is that—
counted in the kinds of jobs that
would until then have been behind
the locked steel doors of the IT de-
partment—our trade grew by two or-
ders of magnitude, or if you prefer, by
more than 10,000%.

Getting hooked on computers is
easy—almost anybody can make a
program work, just as almost anybody

A Generation
Lost in
the Bazaar

doi:10.1145/2347736.2347752

 Article development led by
 queue.acm.org

Quality happens only when
someone is responsible for it.

By Poul-Henning Kamp

54 communications of the acm | october 2012 | vol. 55 | no. 10

practice

can nail two pieces of wood together
in a few tries. The trouble is that the
market for two pieces of wood nailed
together—inexpertly—is fairly small
outside of the “proud grandfather”
segment, and getting from there to
a decent set of chairs or fitted cup-
boards takes talent, practice, and
education. The extra 9,900% had nei-
ther practice nor education when they
arrived in our trade, and before they
ever had the chance to acquire it, the
party was over and most of them were
out of a job. I will charitably assume
that those who managed to hang on
were the most talented and most
skilled, but even then there is no es-
caping that as IT professionals they
mostly sucked because of their lack of
ballast.

The bazaar meme advocated by
Raymond, “Just hack it,” as opposed
to the carefully designed cathedrals
of the pre-dot-com years, did, unfor-
tunately, not die with the dot-com
madness, and today Unix is rapidly
sinking under its weight.

I updated my laptop. I have been
running the development version of
FreeBSD for 18 years straight now, and
compiling even my Spartan work envi-
ronment from source code takes a full
day, because it involves trying to make
sense and architecture out of Ray-
mond’s anarchistic software bazaar.

At the top level, the FreeBSD ports
collection is an attempt to create a
map of the bazaar that makes it easy
for FreeBSD users to find what they
need. In practice this map currently
consists of 22,198 files that give a
summary description of each stall
in the bazaar—a couple of lines tell-
ing you roughly what that stall offers
and where you can read more about
it. Also included are 23,214 Make-
files that tell you what to do with the
software you find in each stall. These
Makefiles also try to inform you of the
choices you should consider, which
options to choose, and what would
be sensible defaults for them. The
map also conveniently comes with
24,400 patch files to smooth over the
lack of craftsmanship of many of the
wares offered, but, generally, it is lack
of portability that creates a need for
these patch files.

Finally, the map helpfully tells you
that if you want to have www/firefox,
you will first need to get devel/nspr,
security/nss, databases/sqlite3, and
so on. Once you look up those in the
map and find their dependencies,
and recursively look up their depen-
dencies, you will have a shopping list
of the 122 packages you will need be-
fore you can get to www/firefox.

Modularity and code reuse is, of
course, A Good Thing. Even in the

most trivially simple case, however,
the CS/IT dogma of code reuse is to-
tally foreign in the bazaar: the soft-
ware in the FreeBSD ports collection
contains at least 1,342 copied and
pasted cryptographic algorithms.

If that resistance/ignorance of
code reuse had resulted in self-con-
tained and independent packages
of software, the price of the code du-
plication might actually have been
a good trade-off for ease of package
management. But that was not the
case: the packages form a tangled
web of haphazard dependencies that
results in much code duplication and
waste.

Here is one example of an ironic
piece of waste: Sam Leffler’s graphics/
libtiff is one of the 122 packages on
the road to www/firefox, yet the result-
ing Firefox browser does not render
TIFF images. For reasons I have not
tried to uncover, 10 of the 122 packag-
es need Perl and seven need Python;
one of them, devel/glib20, needs both
languages for reasons I cannot even
imagine.

Further down the shopping list
are repeated applications of the Pe-
ter Principle, a belief that in an orga-
nization where promotion is based
on achievement, success, and merit,
that organization’s members will
eventually be promoted beyond their
level of ability. The principle is com-
monly phrased, “Employees tend to
rise to their level of incompetence.”
Applying the principle to software,
you will find that you need three dif-
ferent versions of the Make program,
a macroprocessor, an assembler, and
many other interesting packages. At
the bottom of the food chain, so to
speak, is libtool, which tries to hide
the fact that there is no standardized
way to build a shared library in Unix.
Instead of standardizing how to do
that across all Unixen—something
that would take just a single flag to the
ld(1) command—the Peter Principle
was applied and made it libtool’s job
instead. The Peter Principle is indeed
strong in this case—the source code
for devel/libtool weighs in at 414,740
lines. Half that line count is test cases,
which in principle is commendable,
but in practice it is just the Peter Prin-
ciple at work: the tests elaborately ex-
plore the functionality of the complex

/*You are not expected to understand this*/

Whether `make' supports order-only prerequisites.
AC_CACHE_CHECK([whether ${MAKE-make} supports order-only prerequisites],
[lt_cv_make_order_only],
[mkdir conftest.dir
cd conftest.dir
touch b
touch a

cat >confmk << 'END'
a: b | c
a b c:

touch $[]@
END

touch c
if ${MAKE-make} -s -q -f confmk >/dev/null 2>&1; then
lt_cv_make_order_only=yes

else
lt_cv_make_order_only=no

fi
cd ..
rm -rf conftest.dir

])
if test $lt_cv_make_order_only = yes; then
ORDER='|'

else
ORDER=''

fi
AC_SUBST([ORDER])

practice

october 2012 | vol. 55 | no. 10 | communications of the acm 55

solution for a problem that should
not exist in the first place. Even more
maddening is that 31,085 of those
lines are in a single unreadably ugly
shell script called configure. The idea
is that the configure script performs
approximately 200 automated tests,
so that the user is not burdened with
configuring libtool manually. This
is a horribly bad idea, already much
criticized back in the 1980s when it
appeared, as it allows source code
to pretend to be portable behind the
veneer of the configure script, rather
than actually having the quality of
portability to begin with. It is a trav-
esty that the configure idea survived.

The 1980s saw very different Unix
implementations: Cray-1s with their
24-bit pointers, Amdahl UTS main-
frame Unix, a multitude of more or
less competently executed SysV+BSD
mashups from the minicomputer
makers, the almost—but not quite—
Unix shims from vendors such as
Data General, and even the genuine
Unix clone Coherent from the paint
company Mark Williams.

The configure scripts back then
were written by hand and did things
like figure out if this was most like a
BSD- or a SysV-style Unix, and then
copied one or the other Makefile and
maybe also a .h file into place. Later
the configure scripts became more
ambitious, and as an almost predict-
able application of the Peter Princi-
ple, rather than standardize Unix to
eliminate the need for them, some-
body wrote a program, autoconf, to
write the configure scripts.

Today’s Unix/Posix-like operat-
ing systems, even including IBM’s z/
OS mainframe version, as seen with
1980 eyes are identical; yet the 31,085
lines of configure for libtool still
checks if <sys/stat.h> and <stdlib.h>
exist, even though the Unixen, which
lacked them, had neither sufficient
memory to execute libtool nor disks
big enough for its 16MB source code.

How did that happen?
Well, autoconf, for reasons that

have never made sense, was written in
the obscure M4 macro language, which
means the actual tests look like the ex-
ample in the accompanying figure.

Needless to say, this is more than
most programmers would ever want
to put up with, even if they had the

skill, so the input files for autoconf
happen by copy and paste, often
hiding behind increasingly bloated
standard macros covering “standard
tests” such as those mentioned earli-
er, which look for compatibility prob-
lems not seen in the past 20 years.

This is probably also why libtool’s
configure probes no fewer than 26 dif-
ferent names for the Fortran compiler
my system does not have, and then
spends another 26 tests to find out
if each of these nonexistent Fortran
compilers supports the -g option.

That is the sorry reality of the ba-
zaar Raymond praised in his book: a
pile of old festering hacks, endlessly
copied and pasted by a clueless gener-
ation of IT “professionals” who would
not recognize sound IT architecture if
you hit them over the head with it. It
is difficult to believe today, but under
this embarrassing mess lies the ruins
of the beautiful cathedral of Unix, de-
servedly famous for its simplicity of
design, its economy of features, and
its elegance of execution. (Sic transit
gloria mundi etc...etc...)

One of Brooks’s many excellent
points is that quality happens only if
somebody has the responsibility for
it, and that “somebody” can be no
more than one single person—with
an exception for a dynamic duo. I
am surprised that Brooks does not
cite Unix as an example of this claim,
since we can pinpoint with almost
surgical precision the moment that
Unix started to fragment: in the early
1990s when AT&T spun off Unix to
commercialize it, thereby robbing it
of its architects.

More than once in recent years,
others have reached the same con-
clusion as Brooks. Some have tried to
impose a kind of sanity, or even to lay
down the law formally in the form of
technical standards, hoping to bring
order and structure to the bazaar. So
far they have all failed spectacularly,
because the generation of lost dot-
com wunderkids in the bazaar has
never seen a cathedral and therefore
cannot even imagine why you would
want one in the first place, much less
what it should look like. It is a sad
irony, indeed, that those who most
need to read it may find The Design
of Design entirely incomprehensible.
But to anyone who has ever wondered

if using m4 macros to configure auto-
conf to write a shell script to look for
26 Fortran compilers in order to build
a Web browser was a bit of a detour,
Brooks book offers well-reasoned
hope that there can be a better way.	

 Related articles
 on queue.acm.org

Open vs. Closed: Which Source
is More Secure?

Richard Ford
http://queue.acm.org/detail.cfm?id=1217267

The Hyperdimensional Tar Pit

Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=2108597

Broken Builds
George Neville-Neil
http://queue.acm.org/detail.cfm?id=1740550

References
1.	B rooks, F. The Design of Design. Addison-Wesley

Professional, 2010.
2.	R aymond, E. The Cathedral and the Bazaar. O’Reilly

Media, Sebastapol, CA, 1999.

Poul-Henning Kamp (phk@FreeBSD.org) has
programmed computers for 26 years and is the inspiration
behind bikeshed.org. His software has been widely
adopted as under-the-hood building blocks in both open
source and commercial products. His most recent project
is the Varnish HTTP accelerator, which is used to speed up
large Web sites such as Facebook.

© 2012 ACM 0001-0782/12/10 $15.00

