
1. 7.1-1 
 
AB13   19    9    5   12    8    7    4   21    2    6   11    
 
A 13  B19    9    5   12    8    7    4   21    2    6   11  
 
A 13   19  B 9    5   12    8    7    4   21    2    6   11  
 
   9 A 19   13  B 5   12    8    7    4   21    2    6   11  
 
   9    5 A 13   19  B12    8    7    4   21    2    6   11  
 
   9    5 A 13   19   12  B 8    7    4   21    2    6   11  
 
   9    5    8 A 19   12   13  B 7    4   21    2    6   11  
 
   9    5    8    7 A 12   13   19  B 4   21    2    6   11  
 
   9    5    8    7    4 A 13   19   12  B21    2    6   11  
 
   9    5    8    7    4 A 13   19   12   21  B 2    6   11  
 
   9    5    8    7    4    2 A 19   12   21   13  B 6   11  
 
   9    5    8    7    4    2    6 A 12   21   13   19  B11  
 
   9    5    8    7    4    2    6  <11 > 21   13   19   12 
 
2. & 3.  7.1-2, 7.2-2 

Show that the running time of the quicksort is 

€ 

Θ n2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ when all the elements in the array have the same 

value. 
 
Solution: It is a special case of quicksort, when all the elements of the array have the same value. For 
this special case the algorithm “partition” always returns the value of q as r. Where r is the size of 
the partition (i.e. passed to the partition algorithm). So the array gets divided by (n-1) and 1 elements 
 
Thus if we have an array of n elements, we can write the following binary tree 



 
 
 
 
                          
 
 
 
 
 
 
 
 
 
 
 
                                   
 
 
T(n)      =   T(n-1) + Θ(1) 
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 (k) 

             = 
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T(n)     =    Θ(n2) 
PARTITION Modification  
To return q = (p+r)/2 when all elements in the array has the same value 
 
PARTITION (A,p,r) 

1. x = A[r] 
2. i  = p-1 
3. flag = 0 
4. for j = p to r-1 
5.       do if A[j] ≤ x 
6.               then i = i +1  
7.                       exchange A[i]⇔ A[j] 
8.                       if A[j] ≠ x 
9.                            flag = 1 
10. exchange A[i+1]⇔ A[j] 
11. if   flag = 1 
12.        return i+1 
13. else 
14.       return (p+r)/2 

 
 
4.  8.2-1. 
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(a) 
A   
1 2 3 4 5 6 7 8 9 10 11 
7 1 3 1 2 4 5 7 2 4 3 
 
C 
1 2 3 4 5 6 7 
2 2 2 2 1 0 2 
  

(b) 
C 
1 2 3 4 5 6 7 
2 4 6 8 9 9 11 

 
 

(c) 
B   
1 2 3 4 5 6 7 8 9 10 11 
     3      

 
C 
1 2 3 4 5 6 7 
2 4 5 8 9 9 11 

 
(d) 

B   
1 2 3 4 5 6 7 8 9 10 11 
     3  4    

 
C 
1 2 3 4 5 6 7 
2 4 5 7 9 9 11 

 
(e) 

B   
1 2 3 4 5 6 7 8 9 10 11 
   2  3  4    

 
 
 
C 
1 2 3 4 5 6 7 
2 3 5 7 9 9 11 

 
(f) 

B   
1 2 3 4 5 6 7 8 9 10 11 
1 1 2 2 3 3 4 4 5 7 7 



5.  8.3-1. 
 

Initial Step1      Step2      Step3 
COW SEA       BAR  BAR 
DOG TEA       EAR       BIG 
SEA MOB       TAB       BOX 
RUG TAB       TAR       COW 
ROW DOG       SEA       DIG 
MOB RUG       TEA       DOG 
BOX DIG       DIG       EAR 
TAB BIG       BIG       FOX 
BAR BAR       MOB       MOB 
EAR EAR       DOG       NOW 
TAR TAR       COW       ROW 
DIG COW       ROW       RUG 
BIG ROW       NOW       SEA 
TEA NOW       BOX       TAB 
NOW BOX       FOX       TAR 
FOX FOX       RUG       TEA    

COLUMN                       
AFFECTED 

   

 
6.  10.3-1 
 

start

next
key
prev

1

2 3 4 5 6 \
13 4 8 19 5 11
\ 1 2 3 4 5

1 2 3 4 5 6

 
 
 

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
13 4 8 19 115\ 1 4 7 10 134 7 10 13 16 \  

 
7.  10.3-2 
 

Each list element is an object that occupies a contiguous sub-array of length 2 within the array. 
The two fields are key, next corresponds to offsets 0 and 1 respectively. A pointer to an object is 
an index of the first element of the object. We keep the free objects in the same array, which we 
call the free list. The free list uses the next, which store the next pointers within the list. The head 
of the free list is held in the global variable free. 
 
Allocate-Object() 
{ 

 if (free = NIL) 
then error " Out of Space" 



else 
 x=free 
            free = next[A[free ]] 
 
return x 

} 
 
Delete-Object(x) 
{ 
 next[A[x]] = free 
 free=x 
} 

 
 

8.  10.4-1 

18

12 10
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9.  10.4-4 
 

print-tree(root) 
{ 

if (root ≠ NIL)  
{ 

print(root.key) 
 

print-tree(root.left-child)  
print-tree(root.right-sibiling) 

 } 
} 

 
 
10.  10-1  
 
Comparison among lists 
 
 Unsorted 

single linked 
list 

Sorted Single    
linked list 

Unsorted 
Doubly linked 

list 

Sorted 
Doubly linked 

list 
SEARCH (L, K)  Θ(n) Θ(n) Θ(n) Θ(n) 
INSERT (L, X) Θ(1) Θ(n) Θ(1) Θ(n) 
DELETE (L, X) Θ(n) Θ(n) Θ(1) Θ(1) 



SUCCESSOR (L, X) Θ(n) Θ(1) Θ(n) Θ(1) 
PREDECESSOR (L, X) Θ(n) Θ(n) Θ(n) Θ(1) 
MINIMUM (L) Θ(n) Θ(1) Θ(n) Θ(1) 
MAXIMUM (L) Θ(n) Θ(n) Θ(n) Θ(1) 
 
 
11.  12.2-1 
 

c and e 
 
c Because 912 cannot be encountered when a left path is taken from 911 
e Because 299 cannot be encountered after taking a right path from 347 

 
12.  12.3-4 
 

False 
 
Below is a counter-example 
 
Deleting 1 then 2 
 

2

1 4

3

2

4

3

4

3

 
 
Deleting 2 then 1 
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13.  13.1-1 
 

Tree with black-height 2 
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Tree with black-height 3 
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Tree with black-height 4 
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14.  13.1-5 
 

Show that the longest simple path from a node x in a red-black tree to a descendant leaf has 
length at most twice that of the shortest path from node x to a descendant leaf. 
 
The shortest simple path from any node x will be the black height of the tree with x as root(i.e., 
bh(x)). There could be many branches in the tree; each branch is a combination of red and black 
nodes. The longest simple path in any tree will be that path which has the total number of nodes 
= (Property 4) bh(x) + max possible number of red nodes. The maximum possible number of red 
nodes will be equal to the bh(x), as to satisfy the red-black property., for each red node, its 
children has to be clack (no two consecutive red nodes in a path). Hence the max height of the 
tree could be 2 * bh(x), twice the shortest simple path. 

 
15. 13.2-3 
 

Let a, b, and c be arbitrary nodes in subtrees α, β, and γ, respectively, in the left tree of Figure 
13.2. How do the depths of a, b, and c change when a left rotation is performed on node x in the 
figure? 
 
The depth of a increases by +1 
The depth of b remains the same 
The depth of c changes by –1 

 
16. 13.3-2 
 

Show the red-black trees that result after successively inserting the keys 41, 38, 31, 12, 19, and 8 
into an initially empty red-black tree. 



 
Insert 41   Insert 38 Insert 31 
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17. Show the red-black trees that result after successively inserting the keys 5, 10, 15, 25, 20, and 30 
into an initially empty red-black tree. 
 

Insert 5  Insert 10  Insert 15 
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Insert 20 
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Insert 25     Insert 30 
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18. 11.2-2 
 

Demonstrate the insertion of the keys 5, 28, 19, 15, 20, 33, 12, 17, and 10 into a hash table with 
collisions resolved by chaining. Let the table have 9 slots, and let the hash function be h(k) = k 
mod 9. 
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19. 11.3-1 
 

Suppose we wish to search a linked list of length n, where each element contains a key k along 
with a hash value h(k). Each key is a long character string. How might we take advantage of the 
hash values when searching the list for an element with a given key? 
 
First compute the hash value for the given key.  For each list element, perform the string 
comparison only after verifying that the hash value for the given key is the same as the one 
stored in the list element. 

 
20. 11.4-1 
 

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, and 59 into a hash table of length m=11 
using open addressing with the primary hash function h’(k) = k mod m. Illustrate the result of 
inserting these keys using linear probing, using quadratic probing with c1 = 1and c2 = 3, and 
using double hashing with h2(k) = 1 + (k mod (m-1)). 
 
Linear probing  Quadratic Probing Double Hashing 
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21. 11.4-4 
 

Consider an open-address hash table with uniform hashing. Give upper bounds on the expected 
number of probes in an unsuccessful search and on the expected number of probes in a 
successful search when the load factor is 

€ 

3
4  and when it is 

€ 

7
8 . 

 
Theorem 11.6. Given an open address hash table with load factor 

€ 

α = n
m <1, the expected 

number of probes in an unsuccessful search is at most 

€ 

1
1−α , assuming uniform hashing. 

 
α =

€ 

3
4 , then the upper bound on the number of probes = 

€ 

1
1− 34

= 4 probes 

 
α = 

€ 

7
8 , then the upper bound on the number of probes = 

€ 

1
1−78

= 8 probes 



 
Theorem 11.8. Given an open address hash table with load factor 

€ 

α = n
m <1, the expected 

number of probes in a successful search is at most 

€ 

1
α
ln 1
1−α , assuming uniform hashing and 

assuming that each key in the table is equally likely to be searched for. 
 
α = 

€ 

3
4 .   

€ 

1
3
4
ln 1
1− 34

 = 1.85 probes 

 
α = 

€ 

7
8 .   

€ 

1
7
8
ln 1
1−78

= 2.38 probes 

 


