
1. 7.1-1

AB13 19 9 5 12 8 7 4 21 2 6 11

A 13 B19 9 5 12 8 7 4 21 2 6 11

A 13 19 B 9 5 12 8 7 4 21 2 6 11

 9 A 19 13 B 5 12 8 7 4 21 2 6 11

 9 5 A 13 19 B12 8 7 4 21 2 6 11

 9 5 A 13 19 12 B 8 7 4 21 2 6 11

 9 5 8 A 19 12 13 B 7 4 21 2 6 11

 9 5 8 7 A 12 13 19 B 4 21 2 6 11

 9 5 8 7 4 A 13 19 12 B21 2 6 11

 9 5 8 7 4 A 13 19 12 21 B 2 6 11

 9 5 8 7 4 2 A 19 12 21 13 B 6 11

 9 5 8 7 4 2 6 A 12 21 13 19 B11

 9 5 8 7 4 2 6 <11 > 21 13 19 12

2. & 3. 7.1-2, 7.2-2

Show that the running time of the quicksort is

€

Θ n2⎛
⎝
⎜ ⎞

⎠
⎟ when all the elements in the array have the same

value.

Solution: It is a special case of quicksort, when all the elements of the array have the same value. For
this special case the algorithm “partition” always returns the value of q as r. Where r is the size of
the partition (i.e. passed to the partition algorithm). So the array gets divided by (n-1) and 1 elements

Thus if we have an array of n elements, we can write the following binary tree

T(n) = T(n-1) + Θ(1)

 =
 Θ

 (k)

 =
 Θ

()

T(n) = Θ(n2)
PARTITION Modification
To return q = (p+r)/2 when all elements in the array has the same value

PARTITION (A,p,r)

1. x = A[r]
2. i = p-1
3. flag = 0
4. for j = p to r-1
5. do if A[j] ≤ x
6. then i = i +1
7. exchange A[i]⇔ A[j]
8. if A[j] ≠ x
9. flag = 1
10. exchange A[i+1]⇔ A[j]
11. if flag = 1
12. return i+1
13. else
14. return (p+r)/2

4. 8.2-1.

n

n-1
/2

1

1 n-2

=n

=n

=n-1

2

2

n

2

 1 1

3

.

.

.

Θ(n2)

(a)
A
1 2 3 4 5 6 7 8 9 10 11
7 1 3 1 2 4 5 7 2 4 3

C
1 2 3 4 5 6 7
2 2 2 2 1 0 2

(b)
C
1 2 3 4 5 6 7
2 4 6 8 9 9 11

(c)
B
1 2 3 4 5 6 7 8 9 10 11
 3

C
1 2 3 4 5 6 7
2 4 5 8 9 9 11

(d)

B
1 2 3 4 5 6 7 8 9 10 11
 3 4

C
1 2 3 4 5 6 7
2 4 5 7 9 9 11

(e)

B
1 2 3 4 5 6 7 8 9 10 11
 2 3 4

C
1 2 3 4 5 6 7
2 3 5 7 9 9 11

(f)

B
1 2 3 4 5 6 7 8 9 10 11
1 1 2 2 3 3 4 4 5 7 7

5. 8.3-1.

Initial Step1 Step2 Step3
COW SEA BAR BAR
DOG TEA EAR BIG
SEA MOB TAB BOX
RUG TAB TAR COW
ROW DOG SEA DIG
MOB RUG TEA DOG
BOX DIG DIG EAR
TAB BIG BIG FOX
BAR BAR MOB MOB
EAR EAR DOG NOW
TAR TAR COW ROW
DIG COW ROW RUG
BIG ROW NOW SEA
TEA NOW BOX TAB
NOW BOX FOX TAR
FOX FOX RUG TEA

COLUMN
AFFECTED

6. 10.3-1

start

next
key
prev

1

2 3 4 5 6 \
13 4 8 19 5 11
\ 1 2 3 4 5

1 2 3 4 5 6

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
13 4 8 19 115\ 1 4 7 10 134 7 10 13 16 \

7. 10.3-2

Each list element is an object that occupies a contiguous sub-array of length 2 within the array.
The two fields are key, next corresponds to offsets 0 and 1 respectively. A pointer to an object is
an index of the first element of the object. We keep the free objects in the same array, which we
call the free list. The free list uses the next, which store the next pointers within the list. The head
of the free list is held in the global variable free.

Allocate-Object()
{

 if (free = NIL)
then error " Out of Space"

else
 x=free
 free = next[A[free]]

return x

}

Delete-Object(x)
{
 next[A[x]] = free
 free=x
}

8. 10.4-1

18

12 10

7 4 2 21

5

9. 10.4-4

print-tree(root)
{

if (root ≠ NIL)
{

print(root.key)

print-tree(root.left-child)
print-tree(root.right-sibiling)

 }
}

10. 10-1

Comparison among lists

 Unsorted

single linked
list

Sorted Single
linked list

Unsorted
Doubly linked

list

Sorted
Doubly linked

list
SEARCH (L, K) Θ(n) Θ(n) Θ(n) Θ(n)
INSERT (L, X) Θ(1) Θ(n) Θ(1) Θ(n)
DELETE (L, X) Θ(n) Θ(n) Θ(1) Θ(1)

SUCCESSOR (L, X) Θ(n) Θ(1) Θ(n) Θ(1)
PREDECESSOR (L, X) Θ(n) Θ(n) Θ(n) Θ(1)
MINIMUM (L) Θ(n) Θ(1) Θ(n) Θ(1)
MAXIMUM (L) Θ(n) Θ(n) Θ(n) Θ(1)

11. 12.2-1

c and e

c Because 912 cannot be encountered when a left path is taken from 911
e Because 299 cannot be encountered after taking a right path from 347

12. 12.3-4

False

Below is a counter-example

Deleting 1 then 2

2

1 4

3

2

4

3

4

3

Deleting 2 then 1

2

1 4

3

4

3

1 4

3

13. 13.1-1

Tree with black-height 2
8

4

2

1 3 5

6

7 9

10

11

12

13

14

15

Tree with black-height 3

8

4

2

1 3 5

6

7 9

10

11

12

13

14

15

Tree with black-height 4

8

4

2

1 3 5

6

7 9

10

11

12

13

14

15

14. 13.1-5

Show that the longest simple path from a node x in a red-black tree to a descendant leaf has
length at most twice that of the shortest path from node x to a descendant leaf.

The shortest simple path from any node x will be the black height of the tree with x as root(i.e.,
bh(x)). There could be many branches in the tree; each branch is a combination of red and black
nodes. The longest simple path in any tree will be that path which has the total number of nodes
= (Property 4) bh(x) + max possible number of red nodes. The maximum possible number of red
nodes will be equal to the bh(x), as to satisfy the red-black property., for each red node, its
children has to be clack (no two consecutive red nodes in a path). Hence the max height of the
tree could be 2 * bh(x), twice the shortest simple path.

15. 13.2-3

Let a, b, and c be arbitrary nodes in subtrees α, β, and γ, respectively, in the left tree of Figure
13.2. How do the depths of a, b, and c change when a left rotation is performed on node x in the
figure?

The depth of a increases by +1
The depth of b remains the same
The depth of c changes by –1

16. 13.3-2

Show the red-black trees that result after successively inserting the keys 41, 38, 31, 12, 19, and 8
into an initially empty red-black tree.

Insert 41 Insert 38 Insert 31

41 38

41

38

41

31

3

38

31 41

Insert 12

38

31 41

12

1

38

31 41

12

38

31 41

12

Insert 19

38

31 41

12

19

2

38

31 41

19

12

3

38

19 41

12 31

Insert 8

38

19 41

12 31

8

1

38

19 41

12 31

8

17. Show the red-black trees that result after successively inserting the keys 5, 10, 15, 25, 20, and 30
into an initially empty red-black tree.

Insert 5 Insert 10 Insert 15

5

5

10

5

10

15

3

10

155

Insert 20

10

155

20

1

10

155

20

10

155

20

Insert 25 Insert 30

10

155

20

3

25

10

205

15 25

10

205

15 25

25

1

10

205

15 25

30

18. 11.2-2

Demonstrate the insertion of the keys 5, 28, 19, 15, 20, 33, 12, 17, and 10 into a hash table with
collisions resolved by chaining. Let the table have 9 slots, and let the hash function be h(k) = k
mod 9.

0
1
2
3
4
5
6
7
8

5

28 19

15

20

33

12

17

10 /
/
/

/

/

/

/

/

/

19. 11.3-1

Suppose we wish to search a linked list of length n, where each element contains a key k along
with a hash value h(k). Each key is a long character string. How might we take advantage of the
hash values when searching the list for an element with a given key?

First compute the hash value for the given key. For each list element, perform the string
comparison only after verifying that the hash value for the given key is the same as the one
stored in the list element.

20. 11.4-1

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, and 59 into a hash table of length m=11
using open addressing with the primary hash function h’(k) = k mod m. Illustrate the result of
inserting these keys using linear probing, using quadratic probing with c1 = 1and c2 = 3, and
using double hashing with h2(k) = 1 + (k mod (m-1)).

Linear probing Quadratic Probing Double Hashing

0
1
2
3
4
5
6
7
8
9

10 10

22

31

4
15
28
17

88

59

0
1
2
3
4
5
6
7
8
9

10

22

88
17
4

28
59
15
31
10

0
1
2
3
4
5
6
7
8
9

10

22

59
17
4
15
28
88

31
10

21. 11.4-4

Consider an open-address hash table with uniform hashing. Give upper bounds on the expected
number of probes in an unsuccessful search and on the expected number of probes in a
successful search when the load factor is

€

3
4 and when it is

€

7
8 .

Theorem 11.6. Given an open address hash table with load factor

€

α = n
m <1, the expected

number of probes in an unsuccessful search is at most

€

1
1−α , assuming uniform hashing.

α =

€

3
4 , then the upper bound on the number of probes =

€

1
1− 34

= 4 probes

α =

€

7
8 , then the upper bound on the number of probes =

€

1
1−78

= 8 probes

Theorem 11.8. Given an open address hash table with load factor

€

α = n
m <1, the expected

number of probes in a successful search is at most

€

1
α
ln 1
1−α , assuming uniform hashing and

assuming that each key in the table is equally likely to be searched for.

α =

€

3
4 .

€

1
3
4
ln 1
1− 34

 = 1.85 probes

α =

€

7
8 .

€

1
7
8
ln 1
1−78

= 2.38 probes

