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2.  10.3-2 
 
Each list element is an object that occupies a contiguous sub array of length 2 within the 
array. The two fields are key, next corresponds to offsets 0 and 1 respectively. A pointer 
to an object is an index of the first element of the object. We keep the free objects in the 
same array, which we call the free list. The free list uses the next, which store the next 
pointers within the list. The head of the free list is held in the global variable free. 
 
Allocate-Object() 
{ 

 if(free = NIL) 
then error " Out of Space" 

else 
 x=free 
            free = next[A[free ]] 
 
return x 

} 
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Delete-Object(x) 
{ 
 next[A[x]] = free 
 free=x 
} 
 
 
3. 10.4-1 
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4.  10.4-4 
 
print-tree(root) 
{ 

if (root ≠ NIL)  
{ 

print(root.key) 
 
print-tree(root.left-child)  
print-tree(root.right-sibiling) 

 } 
} 
 
5.  10-1  
 
Comparison among lists 

Key Index 
   
Left Right 



 
 Unsorted 

single linked 
list 

Sorted Single   
linked list 

Unsorted 
Doubly linked 

list 

Sorted 
Doubly linked 

list 
SEARCH (L, K)  Θ(n) Θ(n) Θ(n) Θ(n) 
INSERT (L, X) Θ(1) Θ(n) Θ(1) Θ(n) 
DELETE (L, X) Θ(n) Θ(n) Θ(1) Θ(1) 
SUCCESSOR (L, X) Θ(n) Θ(1) Θ(n) Θ(1) 
PREDECESSOR (L, X) Θ(n) Θ(n) Θ(n) Θ(1) 
MINIMUM (L) Θ(n) Θ(1) Θ(n) Θ(1) 
MAXIMUM (L) Θ(n) Θ(n) Θ(n) Θ(n) 
 
 
6.  12.2-1 
 
c and e 
 
c Because 912 cannot be encountered when a left path is taken from 911 
e Because 299 cannot be encountered after taking a right path from 347 
 
7.  12.3-4 
 
Tree-Delete handles the deletion of a node z with two children by 
redirecting the pointers from p[z], left[z] and right [z]to point to 
z’s successor. This replaces the copying of the data from the 
successor. 
 
Tree Delete(T, z) 
{ 
  if left[z] = NIL or right[z] =NIL 
  then y ← z  

else y ← TREE-SUCCESSOR(z) 
 

if left[y] ≠ NIL 
then x ← left[y] 
else x ← right[y] 

 
if x ≠ NIL 

then p[x] ← p[y] 
 

if p[y] = NIL  
then root[T] ← x 
else if y = left[p[y]]  
 then left[p[y]] ← x 
 else right[p[y] ← x 

 
 
 
 
 



if y ≠ z  
left[y] ← left[z] 
right[y] ← right[z]  
p[left[z]] ← y  
p[right[z] ← y 

 
if z = left[p[z]]  

left[p[z]] ← y 
 

else 
right[p[z]] ← y 

 
} 
 
8.  12.3-5 
 
False 
 
Below is a counter example 
 
Deleting 1 then 2 
 
 
        
 
 
 
 
 
 
 
Deleting 2 then 1 
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9.  13.1-1 
 
                              Black node                                                          Red node 
 
 
 Tree with black height 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Tree with black height 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

2 3 

4 
5 

11

7 

9 8 10 

6 

12 13 14 15

  

1 

2 3 

4 
5 

11

7 

9 8 10 

6 

12 13 14 15



 
 
 
Tree with black height 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10.  13.1-5 
 
Show that the longest simple path from a node x in a red-black tree to a descendant 
leaf has length at most twice that of the shortest path from node x to a descendant 
leaf. 
 
The shortest simple path from any node x will be the black height of the tree with x as 
root(i.e., bh(x)). There could be many branches in the tree; each branch is a combination 
of red and black nodes. The longest simple path in any tree will be that path which has 
the total number of nodes = (Property 4) bh(x) + max possible number of red nodes. The 
maximum possible number of red nodes will be equal to the bh(x), as to satisfy the red-
black property., for each red node, its children has to be clack (no two consecutive red 
nodes in a path). Hence the max height of the tree could be 2 * bh(x), twice the shortest 
simple path. 
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11. 13.2-3 
 
Let a, b, and c be arbitrary nodes in subtrees α, β, and γ, respectively, in the left tree 
of Figure 13.2. How do the depths of a, b, and c change when a left rotation is 
performed on node x in the figure? 
 
The depth of a increases by +1 
The depth of b remains the same 
The depth of c changes by –1 
 
 
12. 13.3-2 
 
Show the red-black trees that result after successively inserting the keys 41, 38, 31, 
12, 19, and 8 into an initially empty red-black tree. 
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Step 3. 
Insert 31 
 
         3 
 
      
 
 
 
 
 
Step 4. Insert 12 
 
        1 
 
 
 
 
 
 
 

4411 

3388

4411

3388 

4411 

3311 

3388

44113311

3388 

44113311 

1122  

3388 

4411 3311

1122



Step 5. Insert 19 
 
 
 
           2, 3 
 
 
 
 
 
 
 
 
 
 
Step 6. Insert 8 
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  Final Tree 
 
 
 
13. Show the red-black trees that result after successively inserting the keys 5, 10, 
15, 25, 20, and 30 into an initially empty red-black tree. 
 
Step 1. Insert 5    Step 2. Insert 10 
 
 
 
Step 3. Insert 15 
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Step 4. Insert 25 
 
 
 
      1 
 
 
 
 
 
Step 5. Insert 20 
 
 
 
 
       
             2, 3 
 
 
 
 
 
 
 
 
Step 6. Insert 30 
 
Final Tree 
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14. 13.4-3 
 
In exercise 13.3-2 (problem 12), you found the red-black tree that results from 
successively inserting the keys 41, 38, 31, 12, 19, and 8 into an initially empty tree. 
Now show the red-black trees that result from the successive deletion of the keys in 
the order 8, 12, 19, 31, 38, and 41. 
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  = Node to be deleted 
 
 
Step 1. Delete 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2. Delete 12 
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Step 5. Delete 38 
 
 
 
 
 
 
 
Step 6. Delete 41 
       
         No Tree 
 
 
 
 
15. Show the red-black tree that results from successively deleting the keys 30, 25, 
20, 15, 10, and 5 from the final tree in problem 13. 
 
  = Node to be deleted 
 
 
Step 1. Delete 30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2. Delete 25 
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Step 3. Delete 20 
 
 
 
 
 
 
 
 
 
 
 
 
Step 4. Delete 15 
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Step 5. Delete 10 
 
 
 
 
 
 
 
Step 6. Delete 5 
 
       No Tree 
 
 
 
16. 13.4-7 
 
Suppose that a node x is inserted into a red-black tree with RB-INSERT an then 
immediately deleted with RB-DELETE. Is the resulting red-black tree the same as 
the initial red-black tree? Justify your answer. 
 
No. The tree after insertion and a deletion of the same node may or may not be different. 
Let us insert and delete node 15 into the following tree: 
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  After insertion 
 
 
 
 
 
 
 
After deletion 
 
 
  
       
 
  
 
17. 11.2-2 
 
Demonstrate the insertion of the keys 5, 28, 19, 15, 20, 33, 12, 17, and 10 into a hash 
table with collisions resolved by chaining. Let the table have 9 slots, and let the hash 
function be h(k) = k mod 9. 
 
      

28  19  10 
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12     
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18. 11.3-1 
 
Suppose we wish to search a linked list of length n, where each element contains a 
key k along with a hash value h(k). Each key is a long character string. How might 
we take advantage of the hash values when searching the list for an element with a 
given key? 
 
Each key is a long character thus to compare keys, at every node we need to perform a 
string comparison operation which is very time consuming. Instead we generate a hash 
value for the key (i.e., generate a numeric value for each string) we are searching for and 
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comparing hash values h(k) along the length of the list, which turns out to be numeric 
values and the comparison is faster. 
 
 
19. 11.4-1 
 
Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, and 59 into a hash table of 
length m=11 using open addressing with the primary hash function h’(k) = k mod 
m. Illustrate the result of inserting these keys using linear probing, using quadratic 
probing with c1 = 1and c2 = 3, and using double hashing with h2(k) = 1 + (k mod (m-
1)). 
 
Using Linear probing the final state of the hash table would be: 

0 22 
1 88 
2   
3   
4 4 
5 15 
6 28 
7 17 
8 59 
9 31 
10 10 

 
Using Quadratic probing, with c1 = 1, c2=3) the final state of the hash table would be 
h(k,i) = (h’(k) + c1 * i + c2 * i2) mod m where m=11 and h’(k) = k mod m. 
 

0 22 
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6 28 
7 59 
8 15 
9 31 
10 10 

 



Using double hashing the final state of the hash table would be: 
 

0 22 
1   
2 59 
3 17 
4 4 
5 15 
6 28 
7 88 
8   
9 31 
10 10 

 
 
20. 11.4-4 
 
Consider an open-address hash table with uniform hashing. Give upper bounds on 
the expected number of probes in an unsuccessful search and on the expected 
number of probes in a successful search when the load factor is ¾ and when it is 7/8. 
 
Theorem 11.6. Given an open address hash table with load factor α = n/m < 1, the 
expected number of probes in an unsuccessful search is at most 1/(1-α), assuming 
uniform hashing. 
 
α = ¾, then the upper bound on the number of probes = 1 / (1 - ¾ ) = 4 probes 
 
α = 7/8, then the upper bound on the number of probes = 1 / (1-7/8) = 8 probes 
 
Theorem 11.8. Given an open address hash table with load factor α = n/m < 1, the 
expected number of probes in a successful search is at most (1/α) ln (1/(1-α)), assuming 
uniform hashing and assuming that each key in the table is equally likely to be searched 
for. 
 
α = ¾.  (1/ ¾) ln (1/ (1 – ¾)) = 1.85 probes 
 
α = 7/8.   (1/ .875) ln (1/ (1 – .875)) = 2.38 probes 
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