
1. 10.3-1

Start

 1 2 3 4 5 6

2 3 4 5 6 \
13 4 8 19 5 11

NEXT
KEY
PREV \ 1 2 3 4 5

19 20 21
8 1 16

2. 10.3-2

Each list element is an object that occupies a contiguous sub array of length 2 within the
array. The two fields are key, next corresponds to offsets 0 and 1 respectively. A pointer
to an object is an index of the first element of the object. We keep the free objects in the
same array, which we call the free list. The free list uses the next, which store the next
pointers within the list. The head of the free list is held in the global variable free.

Allocate-Object()
{

 if(free = NIL)
then error " Out of Space"

else
 x=free
 free = next[A[free]]

return x

}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 4 19 5 7 1 11 \ 4 13 16 \ 4 19 10

1

10

Delete-Object(x)
{
 next[A[x]] = free
 free=x
}

3. 10.4-1

18 (6)
(1) (4)

12 (1)
(7) (3)

7 (7)
\ \

4 (3)
(10) \

5 (10)
\ \

10 (4)
(5) (9)

21 (9)
\ \

2 (5)
\ \

15 (2)
(8) \

14 (8)
(6) (2)

4. 10.4-4

print-tree(root)
{

if (root ≠ NIL)
{

print(root.key)

print-tree(root.left-child)
print-tree(root.right-sibiling)

 }
}

5. 10-1

Comparison among lists

Key Index

Left Right

 Unsorted

single linked
list

Sorted Single
linked list

Unsorted
Doubly linked

list

Sorted
Doubly linked

list
SEARCH (L, K) Θ(n) Θ(n) Θ(n) Θ(n)
INSERT (L, X) Θ(1) Θ(n) Θ(1) Θ(n)
DELETE (L, X) Θ(n) Θ(n) Θ(1) Θ(1)
SUCCESSOR (L, X) Θ(n) Θ(1) Θ(n) Θ(1)
PREDECESSOR (L, X) Θ(n) Θ(n) Θ(n) Θ(1)
MINIMUM (L) Θ(n) Θ(1) Θ(n) Θ(1)
MAXIMUM (L) Θ(n) Θ(n) Θ(n) Θ(n)

6. 12.2-1

c and e

c Because 912 cannot be encountered when a left path is taken from 911
e Because 299 cannot be encountered after taking a right path from 347

7. 12.3-4

Tree-Delete handles the deletion of a node z with two children by
redirecting the pointers from p[z], left[z] and right [z]to point to
z’s successor. This replaces the copying of the data from the
successor.

Tree Delete(T, z)
{
 if left[z] = NIL or right[z] =NIL
 then y ← z

else y ← TREE-SUCCESSOR(z)

if left[y] ≠ NIL
then x ← left[y]
else x ← right[y]

if x ≠ NIL

then p[x] ← p[y]

if p[y] = NIL
then root[T] ← x
else if y = left[p[y]]
 then left[p[y]] ← x
 else right[p[y] ← x

if y ≠ z
left[y] ← left[z]
right[y] ← right[z]
p[left[z]] ← y
p[right[z] ← y

if z = left[p[z]]

left[p[z]] ← y

else
right[p[z]] ← y

}

8. 12.3-5

False

Below is a counter example

Deleting 1 then 2

Deleting 2 then 1

2

4

3

2

4

3

1

4

3

41

2

4

3

1 4

3 3

9. 13.1-1

 Black node Red node

 Tree with black height 2

 Tree with black height 3

1

2 3

4
5

11

7

9 8 10

6

12 13 14 15

1

2 3

4
5

11

7

9 8 10

6

12 13 14 15

Tree with black height 4

10. 13.1-5

Show that the longest simple path from a node x in a red-black tree to a descendant
leaf has length at most twice that of the shortest path from node x to a descendant
leaf.

The shortest simple path from any node x will be the black height of the tree with x as
root(i.e., bh(x)). There could be many branches in the tree; each branch is a combination
of red and black nodes. The longest simple path in any tree will be that path which has
the total number of nodes = (Property 4) bh(x) + max possible number of red nodes. The
maximum possible number of red nodes will be equal to the bh(x), as to satisfy the red-
black property., for each red node, its children has to be clack (no two consecutive red
nodes in a path). Hence the max height of the tree could be 2 * bh(x), twice the shortest
simple path.

1

2 3

4
5

11

7

9 8 10

6

12 13 14 15

11. 13.2-3

Let a, b, and c be arbitrary nodes in subtrees α, β, and γ, respectively, in the left tree
of Figure 13.2. How do the depths of a, b, and c change when a left rotation is
performed on node x in the figure?

The depth of a increases by +1
The depth of b remains the same
The depth of c changes by –1

12. 13.3-2

Show the red-black trees that result after successively inserting the keys 41, 38, 31,
12, 19, and 8 into an initially empty red-black tree.

Step 1. Insert 41
 Step 2. Insert 38

Step 3.
Insert 31

 3

Step 4. Insert 12

 1

4411

3388

4411

3388

4411

3311

3388

44113311

3388

44113311

1122

3388

4411 3311

1122

Step 5. Insert 19

 2, 3

Step 6. Insert 8

 1

 Final Tree

13. Show the red-black trees that result after successively inserting the keys 5, 10,
15, 25, 20, and 30 into an initially empty red-black tree.

Step 1. Insert 5 Step 2. Insert 10

Step 3. Insert 15

 3

3388

4411 3311

1122

1199

3388

4411 1199

3311 1122

3388

44111199

33111122

88

55
55

1100

55

1100

1155

1100

1155 55

Step 4. Insert 25

 1

Step 5. Insert 20

 2, 3

Step 6. Insert 30

Final Tree

 1

14. 13.4-3

In exercise 13.3-2 (problem 12), you found the red-black tree that results from
successively inserting the keys 41, 38, 31, 12, 19, and 8 into an initially empty tree.
Now show the red-black trees that result from the successive deletion of the keys in
the order 8, 12, 19, 31, 38, and 41.

1100

1155 55

2255

1100

1155 55

2255

1100

1155 55

2255

2200

1100

55 2200

22551155

1100

55 2200

22551155

3300

 = Node to be deleted

Step 1. Delete 8

Step 2. Delete 12

 2

Step 3. Delete 19

Step 4. Delete 31
 2

3388

44111199

3311 1122

88

3388

44111199

3311 1122

3388

4411 1199

3311 1122

3388

4411 1199

3311

3388

4411 1199

3311

3388

4411 3311

3388

44113311

3388

4411

Step 5. Delete 38

Step 6. Delete 41

 No Tree

15. Show the red-black tree that results from successively deleting the keys 30, 25,
20, 15, 10, and 5 from the final tree in problem 13.

 = Node to be deleted

Step 1. Delete 30

Step 2. Delete 25

 2

3388

4411

4411

4411

1100

55 2200

22551155

3300

1100

55 2200

22551155

1100

55 2200

22551155

1100

55 2200

1155

Step 3. Delete 20

Step 4. Delete 15

 2

Step 5. Delete 10

Step 6. Delete 5

 No Tree

16. 13.4-7

Suppose that a node x is inserted into a red-black tree with RB-INSERT an then
immediately deleted with RB-DELETE. Is the resulting red-black tree the same as
the initial red-black tree? Justify your answer.

No. The tree after insertion and a deletion of the same node may or may not be different.
Let us insert and delete node 15 into the following tree:

1100

55 2200

1155

1100

55 1155

1100

55 1155

1100

55

1100

55

55

55

 After insertion

After deletion

17. 11.2-2

Demonstrate the insertion of the keys 5, 28, 19, 15, 20, 33, 12, 17, and 10 into a hash
table with collisions resolved by chaining. Let the table have 9 slots, and let the hash
function be h(k) = k mod 9.

28 19 10
20
12

5
15 33

17

18. 11.3-1

Suppose we wish to search a linked list of length n, where each element contains a
key k along with a hash value h(k). Each key is a long character string. How might
we take advantage of the hash values when searching the list for an element with a
given key?

Each key is a long character thus to compare keys, at every node we need to perform a
string comparison operation which is very time consuming. Instead we generate a hash
value for the key (i.e., generate a numeric value for each string) we are searching for and

55

1100

1100

55 1155

1100

55

comparing hash values h(k) along the length of the list, which turns out to be numeric
values and the comparison is faster.

19. 11.4-1

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, and 59 into a hash table of
length m=11 using open addressing with the primary hash function h’(k) = k mod
m. Illustrate the result of inserting these keys using linear probing, using quadratic
probing with c1 = 1and c2 = 3, and using double hashing with h2(k) = 1 + (k mod (m-
1)).

Using Linear probing the final state of the hash table would be:

0 22
1 88
2
3
4 4
5 15
6 28
7 17
8 59
9 31
10 10

Using Quadratic probing, with c1 = 1, c2=3) the final state of the hash table would be
h(k,i) = (h’(k) + c1 * i + c2 * i2) mod m where m=11 and h’(k) = k mod m.

0 22
1 88
2
3 17
4 4
5
6 28
7 59
8 15
9 31
10 10

Using double hashing the final state of the hash table would be:

0 22
1
2 59
3 17
4 4
5 15
6 28
7 88
8
9 31
10 10

20. 11.4-4

Consider an open-address hash table with uniform hashing. Give upper bounds on
the expected number of probes in an unsuccessful search and on the expected
number of probes in a successful search when the load factor is ¾ and when it is 7/8.

Theorem 11.6. Given an open address hash table with load factor α = n/m < 1, the
expected number of probes in an unsuccessful search is at most 1/(1-α), assuming
uniform hashing.

α = ¾, then the upper bound on the number of probes = 1 / (1 - ¾) = 4 probes

α = 7/8, then the upper bound on the number of probes = 1 / (1-7/8) = 8 probes

Theorem 11.8. Given an open address hash table with load factor α = n/m < 1, the
expected number of probes in a successful search is at most (1/α) ln (1/(1-α)), assuming
uniform hashing and assuming that each key in the table is equally likely to be searched
for.

α = ¾. (1/ ¾) ln (1/ (1 – ¾)) = 1.85 probes

α = 7/8. (1/ .875) ln (1/ (1 – .875)) = 2.38 probes

	Start
	PREV
	False
	Final Tree

