1.  22.1-2

Give an adjacency-list representation for a complete binary tree on 7 vertices. Give an equivalent adjacency-matrix representation. Assume that vertices are numbered from 1 to 7 as in a binary heap.

Adjacency List:


	1
	 
	
	2
	 
	
	3
	/

	2
	 
	
	4
	 
	
	5
	/

	3
	 
	
	6
	 
	
	7
	/

	4
	/
	
	
	
	
	
	

	5
	/
	
	
	
	
	
	

	6
	/
	
	
	
	
	
	

	7
	/
	
	
	
	
	
	


Adjacency Matrix:

	
	1
	2
	3
	4
	5
	6
	7

	1
	0
	1
	1
	0
	0
	0
	0

	2
	0
	0
	0
	1
	1
	0
	0

	3
	0
	0
	0
	0
	0
	1
	1

	4
	0
	0
	0
	0
	0
	0
	0

	5
	0
	0
	0
	0
	0
	0
	0

	6
	0
	0
	0
	0
	0
	0
	0

	7
	0
	0
	0
	0
	0
	0
	0


2.  22.1-5

The square of a directed graph G = (V, E) is the graph G2 = (V, E2) such that (u,w) ( E2 if and only if for some v ( V, both (u,v) ( E and (v, w) ( E. That is, G2 contains an edge between u and w whenever G contains a path with exactly two edges between u and w. Describe efficient algorithms for computing G2 from G for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.

G2 for an adjacency matrix:

Computing G2 may be done in V3 time by matrix multiplication:

for i = 1 to V

  for j = 1 to V

  {

     G2[i][j] = 0;

     for k = 1 to V

       if (g[i][k] == 1 && g[k][i] == 1) {

           G2[i][j] == 1;

           break;

      }

  }
G2 for an adjacency list:

Procedure G-Square (V[G], E[G]){


V[G2] ( V[G]


for each u ( V[G]



for each v ( Adj[u]




for each w ( Adj[v]





E[G2] ( {(u, w)} U E[G2]

}

Run time = O(V3)

3. 22.2-1

Show the d and ( values that result from running breadth-first search on the directed graph of Figure 22.2(a), using vertex 3 as the source.









	Vertex
	d
	( 

	1
	 Infinite
	Nil

	2
	3
	4

	3
	0
	Nil

	4
	2
	5

	5
	1
	3

	6
	1
	3


4. 22.2-3

What is the running time of BFS if its input graph is represented by an adjacency matrix and the algorithm is modified to handle this form of input?

Each vertex can be explored once and its adjacent vertices must be determined too. This takes ((V2) time.

5. Do a DFS on figure 22.6 (p.548). Classify each edge based on the DFS tree you determine.


























T = tree edge











B = back edge











F = forward edge











C = cross edge

6. Find the strongly connected components in figure 22.6.

From 5., the first DFS gives the list R U Q T Y X Z S U W (reverse order of turning black)















Strongly connected components are {s, w, v}, {q, y, t}, {x, z}, {r}, {u}

7. 22.4-1

Show the ordering of vertices produced by TOPOLOGICAL-SORT when it is run on the dag of Figure 22.8, under the assumption of Exercise 22.3-2.







Ordering = P N O S M R Y V X W Z U Q T

8. 22.5-1

How can the number of strongly connected components of a graph change if a new edge is added?

The number of strongly connected components can be reduced.

9. 22.5-3

Professor Deaver claims that the algorithm for strongly connected components can be simplified by using the original (instead of the transpose) graph in the second depth-first search and scanning the vertices in order of increasing finishing times. Is the professor correct?


No.  Consider

The order from the first DFS is 1 0 2.

This will lead to the entire graph being reported as a single SCC in the second DFS.

10. 22.5-4

Prove that for any directed graph G, we have ((GT)SCC)T = GSCC. That is, the transpose of the component graph of GT is the same as the component graph of G.

Observe that G and GT will always have the same strongly connected components.

Using Figure 22.9 (p.553) as an example.

GT = 







(GT)SCC = 







(GT)SCC)T =






= GSCC.

11. 23.1-1

Let (u, v) be a minimum-weight edge in a graph G. Show that (u, v) belongs to some minimum spanning tree of G.

Let A be a subset of some MST T such that (u, v) ( A. To choose an edge to be added to A, all the edges on the cut are considered and an edge with lowest weight is selected. Since (u, v) is the minimum weight edge in the graph G, it gets selected on some cut.

12. 24.3-1

Run Dijkstra’s algorithm on the directed graph of Figure 24.2, first using vertex s as the source and then using vertex z as the source. In the style of Figure 24.6, show the d and ( values and the vertices in set S after each iteration of the while loop.

Black vertices are in the set S. The black, thick arrows are the values of ( and the values of d are included are listed inside each node.


A.






B.










C.






D.


E.






F.


Using Vertex Z as the source.

A.






B.


C.






D.



E.






F.




G.


13. a. Determine the transitive closure of the following Boolean matrix by using Warshall’s algorithm.

	1
	0
	1
	1
	0

	0
	0
	1
	1
	0

	1
	0
	0
	0
	0

	1
	0
	1
	1
	1

	0
	0
	0
	1
	0


	1
	0
	1
	1
	0

	0
	0
	1
	1
	0

	1
	0
	1
	1
	0

	1
	0
	1
	1
	1

	0
	0
	0
	1
	0


T(1) =
T(2)=

	1
	0
	1
	1
	0

	0
	0
	1
	1
	0

	1
	0
	1
	1
	0

	1
	0
	1
	1
	1

	0
	0
	0
	1
	0


T(3)=
 T(4)=

	1
	0
	1
	1
	0

	1
	0
	1
	1
	0

	1
	0
	1
	1
	0

	1
	0
	1
	1
	1

	0
	0
	0
	1
	0

	1
	0
	1
	1
	1

	1
	0
	1
	1
	1

	1
	0
	1
	1
	1

	1
	0
	1
	1
	1

	1
	0
	1
	1
	1


	1
	0
	1
	1
	1

	1
	0
	1
	1
	1

	1
	0
	1
	1
	1

	1
	0
	1
	1
	1

	1
	0
	1
	1
	1


T(5)= 

b. Convert the matrix to indicate successors and use the version of Warshall’s algorithm that allows path tracing.
	0
	-1
	2
	3
	3

	2
	-1
	2
	3
	3

	0
	-1
	0
	0
	0

	0
	-1
	2
	3
	4

	3
	-1
	3
	3
	3


14. 26.1-2

Prove that for any vertex v other than the source or sink, the total positive flow entering v must equal the total positive flow leaving v.








Capacity constraint: For all u, v ( V, we require f(u, v) <= c(u, v)

In the above figure it can be seen that for each edge f(u, v) <= c(u, v) for edge (s, v1), f(u, v1) = 11 and c(u, v) = 16. 11 <= 16. Similarly for other edges.

Skew Symmetry: For all u, v ( V, we require f(u, v) <= -f(u, v)

It can be seen for each edge (u, v) for flow (u, v) signifies a negative flow –f(v, u) from (v, u)

Flow conservation: For all u, v ( V – {s, t}, we require Σ f(u, v) = 0

It can be seen for each vertex v excluding s and t sum of the flows into it is equal to the flow out of it and hence flow is conserved. For vertex v1, f(s, v1) + f(v2, v1) = f(v1, v3).  11 + 1 = 12.

15. 26.2-1

In Figure 26.1(b), which is the flow across the cut ({s, v2, v4}, {v1, v3, t})? What is the capacity of this cut?


Net flow across the cut is f(s, v1) + f(v2,v1) + f(v2,v3) + f(v3,v4) + f(v4,t) = 11 + 1 + -4 + 7 + 4 = 19 and its capacity is = 16 + 14 +7 + 4 = 41
16    26.2-2
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17 26.3-1
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Flow N/W:
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Residual N/W:
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Final Residual graph:
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18 15.2-1

Finding the optimal parenthesization of a matrix-chain product whose sequence of dimensions is <5, 10, 3, 12, 5, 50, 6>

The m table

	0
	150
	330
	405
	1655
	2010

	0
	0
	360
	330
	2430
	1950

	0
	0
	0
	180
	930
	1770

	0
	0
	0
	0
	3000
	1860

	0
	0
	0
	0
	0
	1500

	0
	0
	0
	0
	0
	0


The s table

	0
	1
	2
	2
	4
	2

	0
	0
	2
	2
	2
	2

	0
	0
	0
	3
	4
	4

	0
	0
	0
	0
	4
	4

	0
	0
	0
	0
	0
	5

	0
	0
	0
	0
	0
	0


The optimal parenthesization 

(A1 * A2) * ((A3 *A4) * (A5 * A6)))

19 15.2-2

MATRIX-CHAIN-MULTIPLY (A, s, i, j)

{

     if i =j

        C ( Ai     

    else
 

       A ( MATRIX-CHAIN-MULTIPLY (A, s, i, s[i, j])

       B ( MATRIX-CHAIN-MULTIPLY (A, s, s[i,j]+1, j)

       C (MATRIX-MULTIPLY (A, B)


   return (C)

}

20 15.2-4

We can find the sum by making a note of the access pattern for the m table

                   Example: For n = 5

	
	1
	2
	3
	4
	5

	1
	4
	3
	2
	1
	0

	2
	X
	4
	3
	2
	1

	3
	X
	X
	4
	3
	2

	4
	X
	X
	X
	4
	3

	5
	X
	X
	X
	X
	4


 X – Don’t Care; The numbers in the cells indicate the number of accesses to the cell

It can be seen that


[image: image13.png]


[image: image14.png]


 R(i,j)  = 
[image: image15.png]


i(i-1)

    = 
[image: image16.png]


 [image: image17.png]ii%1)




   = n/6 ((n+1) (2n+1)) – n/2 (n+1)

  = (n3 – n) /3

21 15.4-1

                      x  = <1,0,0,1,0,1,0,1>               y = <0,1,0,1,1,0,1,1,0>

	

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	
	
	yj
	0
	1
	0
	1
	1
	0
	1
	1
	0

	0
	xi
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	1
	0
	[image: image18.emf] 


0
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1  
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22 15.4-2

 Print LCS without the b table 

print_lcs (i,j)

{

int i,j;                                     /* i, j are the lengths of the two lists */

if ((i = = 0) || (j = = 0))


     return;

if(x[i]  = = y [j])                    /* x, y are the two lists whose LCS is to be found */

{


     print_lcs (i -1, j -1);


     printf(“%d”, x[i]);

}

           else if (c[i-1][j] >= c[i][j])     /* c is the c table as in the algorithm */

{


     print_lcs (i -1, j);

  
}

else

{



     print_lcs (i, j-1);

}

return;

}

23 15.4-5

Algorithm

· a[1 ..n] is the input sequence

· length[1..n] contains the length of the monotonically increasing subsequences up                           to  a[i]=  { i = 1 ..n}

· lms is the length of the longest monotonically increasing subsequence

for i = 2 to n do

Begin

                   for j = 1 to i -1 do


       
Begin



       Search for the j such that length[j] is the largest and a[i] can be 

                              included in the subsequence it represents.



End


   length[i] = length[j] + 1


   if  lms < length[i] then lms = length[i]

            End

24 15-1  

Bitonic TSP

Points P0… Pn-1 are sorted by increasing X- Coordinate

C(i, j) = Cost of achieving optimal pair of paths such that are paths ends with Pi, the other with Pj ( i < j)

Base Case

C(0,1) = dist (0, 1)

General Case

C(i-1, i) =   min  {C(j, i-1) + dist(j, i)}

                0( j< i-1

C(i, j) = C(i, j-1) + dist(j-1, j) where i <j-1

Final solution

       min  {C(i, n-1) + dist(i,n-1)}

  0( i< n-1

25 16.1-1

/* f [1…n] contains finishing times (sorted) of activities

    s [1…n] contains the starting times of those activities

    m[1…n] contains the number of activities from 1 .. i that can be scheduled mi in the

                    problem

    fm[1…n] indicates the finishing times of the tasks scheduled in each of m[1…n]  */

Begin


m[1] = 1


fm[1] = f[1]


for i = 2 to n do 



Begin




if( fm[i-1] ( s[i] then



  
    Begin





m[i] = m[i-1] + 1





fm[i] = f[i]




    End




else




      Begin





fm[i] = fm[i-1]





m[i] = m[i-1]






      End 



End i

End

26 16.1-3

n ( length [s]

for i ( 1 to n


A[i] ( { ( }


//each A[i] (lecture Hall) has a set of activities


LIST_INSERT( L, i );

k ( 0

while L ( (

do k ( k + 1


     i ( head [L]

 
    for j ( i + 1 to tail[L]



do if sj  ( fi



then A[k] ( A[k] U { j }





i ( j





LIST_DELETE( L, j )

return L // the final value of ‘k’ has the number of lecture halls

27 16.2-4

The greedy strategy would be to fill up gas at the last moment i.e., Travel to the farthest gas station that can be reached from the current gas station (without falling short)

28 16.2-5

Sort the points in ascending order of their k values

The greedy strategy would be to enclose the leftmost unenclosed point and all points that lie within a unit distance of this point. The next interval will begin at the closest point to the right of this interval

29 16.3-2
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Generalization:

code =        k-1 1’s followed by a ‘0’, if k ( n-1

                  k   1’s, k = n

30   

String   ababbabbababbababbabb

Pattern ababbabbababbababbabb

	Fail link table 1
	Fail link table 2

	0 a -1

1 b 0

2 a 0

3 b 1

4 b 2

5 a 0

6 b 1

7 b 2

8 a 0

9 b 1

10 a 2

11 b 3

12 b 4

13 a 5

14 b 6

15 a 7

16 b 3

17 b 4

18 a 5

19 b 6

20 b 7
	0 a -1

1 b 0

2 a -1

3 b 0

4 b 2

5 a -1

6 b 0

7 b 2

8 a -1

9 b 0

10 a -1

11 b 0

12 b 2

13 a -1

14 b 0

15 a 7

16 b 0

17 b 2

18 a -1

19 b 0

20 b 2
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