
1.  22.1-2 
 
Give an adjacency-list representation for a complete binary tree on 7 vertices. Give an 
equivalent adjacency-matrix representation. Assume that vertices are numbered from 1 to 
7 as in a binary heap. 

Adjacency List: 
 

1    2    3 / 
2    4    5 / 
3    6    7 / 
4 /       
5 /       
6 /       
7 /       

 
   

Adjacency Matrix: 
 

 1 2 3 4 5 6 7 
1 0 1 1 0 0 0 0 
2 0 0 0 1 1 0 0 
3 0 0 0 0 0 1 1 
4 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 

 
2.  22.1-5 
 
The square of a directed graph G = (V, E) is the graph G2 = (V, E2) such that (u,w) ∈ E2 if 
and only if for some v ∈ V, both (u,v) ∈ E and (v, w) ∈ E. That is, G2 contains an edge 
between u and w whenever G contains a path with exactly two edges between u and w. 
Describe efficient algorithms for computing G2 from G for both the adjacency-list and 
adjacency-matrix representations of G. Analyze the running times of your algorithms. 
 
G2 for an adjacency matrix: 
Computing G2 may be done in V3 time by matrix multiplication: 
for i = 1 to V 
  for j = 1 to V 
  { 
     G2[i][j] = 0; 
     for k = 1 to V 
       if (g[i][k] == 1 && g[k][i] == 1) { 
           G2[i][j] == 1; 
           break; 
      } 
  } 
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G2 for an adjacency list: 
Procedure G-Square (V[G], E[G]){ 
 V[G2]  V[G] 
 for each u ∈ V[G] 
  for each v ∈ Adj[u] 
   for each w ∈ Adj[v] 
    E[G2]  {(u, w)} U E[G2] 
} 
Run time = O(V3) 
  
 
3. 22.2-1 
 
Show the d and Π values that result from running breadth-first search on the directed 
graph of Figure 22.2(a), using vertex 3 as the source. 
 
  
 
 
 
 
 
 
 
 
 
 

Vertex d Π  
1  Infinite Nil 
2 3 4 
3 0 Nil 
4 2 5 
5 1 3 
6 1 3 

 
 
4. 22.2-3 
 
What is the running time of BFS if its input graph is represented by an adjacency matrix 
and the algorithm is modified to handle this form of input? 
 
Each vertex can be explored once and its adjacent vertices must be determined too. This takes 
Θ(V2) time. 
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5. Do a DFS on figure 22.6 (p.548). Classify each edge based on the DFS tree you determine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          T = tree edge 
          B = back edge 
          F = forward edge 
          C = cross edge 
 
 
6. Find the strongly connected components in figure 22.6. 
From 5., the first DFS gives the list R U Q T Y X Z S U W (reverse order of turning black) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Strongly connected components are {s, w, v}, {q, y, t}, {x, z}, {r}, {u} 
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7. 22.4-1 
 
Show the ordering of vertices produced by TOPOLOGICAL-SORT when it is run on the 
dag of Figure 22.8, under the assumption of Exercise 22.3-2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ordering = P N O S M R Y V X W Z U Q T 
 
8. 22.5-1 
 
How can the number of strongly connected components of a graph change if a new edge is 
added? 
 
The number of strongly connected components can be reduced. 
 
 
9. 22.5-3 
 
Professor Deaver claims that the algorithm for strongly connected components can be 
simplified by using the original (instead of the transpose) graph in the second depth-first 
search and scanning the vertices in order of increasing finishing times. Is the professor 
correct? 
 
No.  Consider 
 
The order from the first DFS is 1 0 2. 
 
This will lead to the entire graph being reported as a single SCC in the second DFS. 
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10. 22.5-4 
 
Prove that for any directed graph G, we have ((GT)SCC)T = GSCC. That is, the transpose of 
the component graph of GT is the same as the component graph of G. 
 
Observe that G and GT will always have the same strongly connected components. 
 
Using Figure 22.9 (p.553) as an example. 
 
GT =  
 
 
 
 
 
 
 
 
 
(GT)SCC =  
 
 
 
 
 
 
 
 
(GT)SCC)T = 
 
 
 
 
 
 
 
 
= GSCC. 
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11. 23.1-1 
 
Let (u, v) be a minimum-weight edge in a graph G. Show that (u, v) belongs to some 
minimum spanning tree of G. 
 
Let A be a subset of some MST T such that (u, v) ∉ A. To choose an edge to be added to A, all 
the edges on the cut are considered and an edge with lowest weight is selected. Since (u, v) is the 
minimum weight edge in the graph G, it gets selected on some cut. 
 
12. 24.3-1 
 
Run Dijkstra’s algorithm on the directed graph of Figure 24.2, first using vertex s as the 
source and then using vertex z as the source. In the style of Figure 24.6, show the d and Π 
values and the vertices in set S after each iteration of the while loop. 
 
Black vertices are in the set S. The black, thick arrows are the values of Π and the values of d are 
included are listed inside each node. 
 
A.       B. 
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E.       F. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using Vertex Z as the source. 
 
A.       B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
C.       D. 
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E.       F. 
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13. a. Determine the transitive closure of the following Boolean matrix by using Warshall’s 
algorithm. 
 
1 0 1 1 0 
0 0 1 1 0 
1 0 0 0 0 
1 0 1 1 1 
0 0 0 1 0 

 
T(1) =  T(2)= 
  
 
 
 
 
 
T(3)=   T(4)= 
 
 
 
 
 
 
T(5)=  
 
 
 
 
 
 
b. Convert the matrix to indicate successors and use the version of Warshall’s algorithm 
that allows path tracing. 
 
 
 
 
 
 
 
 

1 0 1 1 0
0 0 1 1 0
1 0 1 1 0
1 0 1 1 1
0 0 0 1 0

1 0 1 1 0 
0 0 1 1 0 
1 0 1 1 0 
1 0 1 1 1 
0 0 0 1 0 

1 0 1 1 0 
1 0 1 1 0 
1 0 1 1 0 
1 0 1 1 1 
0 0 0 1 0 

1 0 1 1 1
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1

1 0 1 1 1 
1 0 1 1 1 
1 0 1 1 1 
1 0 1 1 1 
1 0 1 1 1 

0 -1 2 3 3 
2 -1 2 3 3 
0 -1 0 0 0 
0 -1 2 3 4 
3 -1 3 3 3 



14. 26.1-2 
 
Prove that for any vertex v other than the source or sink, the total positive flow entering v 
must equal the total positive flow leaving v. 
 
 
 
 
 
 
 
 
 
 
Capacity constraint: For all u, v ∈ V, we require f(u, v) <= c(u, v) 
 
In the above figure it can be seen that for each edge f(u, v) <= c(u, v) for edge (s, v1), f(u, v1) = 
11 and c(u, v) = 16. 11 <= 16. Similarly for other edges. 
 
Skew Symmetry: For all u, v ∈ V, we require f(u, v) <= -f(u, v) 
 
It can be seen for each edge (u, v) for flow (u, v) signifies a negative flow –f(v, u) from (v, u) 
 
Flow conservation: For all u, v ∈ V – {s, t}, we require Σ f(u, v) = 0 
 
It can be seen for each vertex v excluding s and t sum of the flows into it is equal to the flow out 
of it and hence flow is conserved. For vertex v1, f(s, v1) + f(v2, v1) = f(v1, v3).  11 + 1 = 12. 
 
15. 26.2-1 
 
In Figure 26.1(b), which is the flow across the cut ({s, v2, v4}, {v1, v3, t})? What is the 
capacity of this cut? 
 
 
 
 
 
 
 
 
 
 
 
Net flow across the cut is f(s, v1) + f(v2,v1) + f(v2,v3) + f(v3,v4) + f(v4,t) = 11 + 1 + -4 + 7 + 4 
= 19 and its capacity is = 16 + 14 +7 + 4 = 41 
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16    26.2-2 
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17 26.3-1 
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Flow N/W: 
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Residual N/W: 
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Final Residual graph: 

                                

1 1

1

s

2

4

5

6

7

8

9

t

1

1
1
1
1

1

1

1

1
1

1

1

1

1

1

3

1 1

1

s

2

4

5

6

7

8

9

t

1

1
1
1
1

1

1

1

1
1

1

1

1

1

1

3

                                                                   

 

 



18 15.2-1 
Finding the optimal parenthesization of a matrix-chain product whose sequence of dimensions is 
<5, 10, 3, 12, 5, 50, 6> 
The m table 
0 150 330 405 1655 2010 
0 0 360 330 2430 1950 
0 0 0 180 930 1770 
0 0 0 0 3000 1860 
0 0 0 0 0 1500 
0 0 0 0 0 0 
 
The s table 
0 1 2 2 4 2 
0 0 2 2 2 2 
0 0 0 3 4 4 
0 0 0 0 4 4 
0 0 0 0 0 5 
0 0 0 0 0 0 
 
The optimal parenthesization  
(A1 * A2) * ((A3 *A4) * (A5 * A6))) 

19 15.2-2 
MATRIX-CHAIN-MULTIPLY (A, s, i, j) 
{ 
     if i =j 
        C ← Ai      
    else   
       A ← MATRIX-CHAIN-MULTIPLY (A, s, i, s[i, j]) 
       B ← MATRIX-CHAIN-MULTIPLY (A, s, s[i,j]+1, j) 
       C ←MATRIX-MULTIPLY (A, B)  
   return (C) 
} 

20 15.2-4 
We can find the sum by making a note of the access pattern for the m table 
 
                   Example: For n = 5 

 1 2 3 4 5 
1 4 3 2 1 0 
2 X 4 3 2 1 
3 X X 4 3 2 
4 X X X 4 3 
5 X X X X 4 



 
 X – Don’t Care; The numbers in the cells indicate the number of accesses to the cell 
 
It can be seen that 
 

 R(i,j)  = i(i-1) 

    =   
   = n/6 ((n+1) (2n+1)) – n/2 (n+1) 
 
 
  = (n3 – n) /3 

21 15.4-1 
                      x  = <1,0,0,1,0,1,0,1>               y = <0,1,0,1,1,0,1,1,0> 
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22 15.4-2 
 Print LCS without the b table  
print_lcs (i,j) 
{ 

int i,j;                                     /* i, j are the lengths of the two lists */ 
if ((i = = 0) || (j = = 0)) 

      return; 
if(x[i]  = = y [j])                    /* x, y are the two lists whose LCS is to be found */ 
{ 

      print_lcs (i -1, j -1); 
      printf(“%d”, x[i]); 

} 
           else if (c[i-1][j] >= c[i][j])     /* c is the c table as in the algorithm */ 

{ 
      print_lcs (i -1, j); 
   } 

else 
{  

      print_lcs (i, j-1); 
} 
return; 

} 

23 15.4-5 
Algorithm 

• a[1 ..n] is the input sequence 
• length[1..n] contains the length of the monotonically increasing subsequences up                           

to  a[i]=  { i = 1 ..n} 
• lms is the length of the longest monotonically increasing subsequence 

 
for i = 2 to n do 

Begin 
                   for j = 1 to i -1 do 
         Begin 
         Search for the j such that length[j] is the largest and a[i] can be  
                              included in the subsequence it represents. 
  End 
    length[i] = length[j] + 1 
    if  lms < length[i] then lms = length[i] 
            End 

24 15-1   
Bitonic TSP 
 
Points P0… Pn-1 are sorted by increasing X- Coordinate 



C(i, j) = Cost of achieving optimal pair of paths such that are paths ends with Pi, the other with Pj 
( i < j) 
 
Base Case 
C(0,1) = dist (0, 1) 
 
General Case 
C(i-1, i) =   min  {C(j, i-1) + dist(j, i)} 
                0≤ j< i-1 
 
C(i, j) = C(i, j-1) + dist(j-1, j) where i <j-1 
 
Final solution 
       min  {C(i, n-1) + dist(i,n-1)} 
  0≤ i< n-1 

25 16.1-1 
/* f [1…n] contains finishing times (sorted) of activities 
    s [1…n] contains the starting times of those activities 
    m[1…n] contains the number of activities from 1 .. i that can be scheduled mi in the 
                    problem 
    fm[1…n] indicates the finishing times of the tasks scheduled in each of m[1…n]  */ 
 
 
Begin 
 m[1] = 1 
 fm[1] = f[1] 
 for i = 2 to n do  
  Begin 
   if( fm[i-1] ≤ s[i] then 
         Begin 
    m[i] = m[i-1] + 1 
    fm[i] = f[i] 
       End 
   else 
         Begin 
    fm[i] = fm[i-1] 
    m[i] = m[i-1]   
         End  
  End i 
End 



26 16.1-3 
n ← length [s] 
for i ← 1 to n 
 A[i] ← { ∅ }   //each A[i] (lecture Hall) has a set of activities 
 LIST_INSERT( L, i ); 
k ← 0 
while L ≠ ∅ 
 do k ← k + 1 
      i ← head [L] 
      for j ← i + 1 to tail[L] 
  do if sj  ≥ fi 

   then A[k] ← A[k] U { j } 
    i ← j 
    LIST_DELETE( L, j ) 
return L // the final value of ‘k’ has the number of lecture halls 

27 16.2-4 
The greedy strategy would be to fill up gas at the last moment i.e., Travel to the farthest gas 
station that can be reached from the current gas station (without falling short) 

28 16.2-5 
Sort the points in ascending order of their k values 
The greedy strategy would be to enclose the leftmost unenclosed point and all points that lie 
within a unit distance of this point. The next interval will begin at the closest point to the right of 
this interval 

29 16.3-2 
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Generalization: 
code =        k-1 1’s followed by a ‘0’, if k ≤ n-1 
                  k   1’s, k = n 



30    
String   ababbabbababbababbabb 
Pattern ababbabbababbababbabb 
 
Fail link table 1 Fail link table 2 
0 a -1 
1 b 0 
2 a 0 
3 b 1 
4 b 2 
5 a 0 
6 b 1 
7 b 2 
8 a 0 
9 b 1 
10 a 2 
11 b 3 
12 b 4 
13 a 5 
14 b 6 
15 a 7 
16 b 3 
17 b 4 
18 a 5 
19 b 6 
20 b 7 

0 a -1 
1 b 0 
2 a -1 
3 b 0 
4 b 2 
5 a -1 
6 b 0 
7 b 2 
8 a -1 
9 b 0 
10 a -1 
11 b 0 
12 b 2 
13 a -1 
14 b 0 
15 a 7 
16 b 0 
17 b 2 
18 a -1 
19 b 0 
20 b 2 

 
 


