
CSE 2320 Notes 3:  Summations 
 

(Last updated 8/17/06 6:39 AM) 
 
CLRS, Appendix A 
 
GEOMETRIC SERIES (review) 
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HARMONIC SERIES 
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Problem A. 1-2 Show that 
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BOUNDING SUMMATIONS USING MATH INDUCTION AND INEQUALITIES 
 

[Techniques are especially important for recurrences in notes 4] 
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a. Show O(n3) 
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(ii) Suppose this holds for n:   
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 Now go on to n + 1 and show that the bound still holds 
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 The bridging step (???) separates the bounding term (
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 Can drop [ . . . ] (through ≤) if it cannot become positive.  Happens if  c ≥ 1 
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b. Show Ω(n3) 
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(ii) Suppose this holds for n:   
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 Now go on to n + 1 and show that the bound still holds 
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 The bridging step (???) involves the same algebra as before. 
 
 Can drop [ . . . ] (through ≥) if it cannot become negative.  Happens if  0 < c ≤ 1/3 
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a. Show O(n2) 
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(ii) Suppose this holds for n:   
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 The bridging step separates the bounding term from everything else: 
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b. Can still show Ω(n2) 
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(ii) Suppose this holds for n:   
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Happens if 0 < c ≤ 1 (or as n grows). 
 
APPROXIMATION BY INTEGRALS 
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! 

x " y# f x( ) " f y( )): 
 

! 

f (x)dx

m"1

n
# $ f (k)

k=m

n
% $ f (x)dx

m

n+1
#  

 
p. 1068 for picture proof 


