CSE 2320 Notes 3: Summations
(Last updated 8/17/06 6:39 AM)
CLRS, Appendix A

GEOMETRIC SERIES (review)
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BOUNDING SUMMATIONS USING MATH INDUCTION AND INEQUALITIES
[Techniques are especially important for recurrences in notes 4]
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Show i~ =0[n [Trivial to show using integration. Y i< = #]
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(i1) Suppose this holds for n:
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Now go on to n + 1 and show that the bound still holds
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The bridging step (???) separates the bounding term (¢(n + 1)3) from everything else (x):
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So 727 is now ¢(n + 1)3 +|(1- 3c)n2 +(2-3c)n+1-c

Can drop [ .. . ] (through =) if it cannot become positive. Happens if ¢ =1



b. Show Q1)
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@) > i2 =1= cn3 using any constant 0 < ¢ < 1
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(i1) Suppose this holds for n:

Now go on to n + 1 and show that the bound still holds
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The bridging step (???) involves the same algebra as before.

Can drop [ .. . ] (through =) if it cannot become negative. Happens if 0 <c < 1/3
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Suppose we attempt to show i = @(Vl )
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a. Show O(n°)
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() Y i =1=cn” using any constant ¢ =
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(i1) Suppose this holds for n:
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Now attempt to goonton + 1.



n+l n
S 2= i+ (n+1)?
i=1 =l
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+n2+2n+1
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scn2+n2+2n+1
=777

<c(n+ 1)2

The bridging step separates the bounding term from everything else:

c(n+1)2+x=cn2+n2+2n+1
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x=cn2+n +2rl+1—c712—2cn—c=n2

+(2-2c)n+1-c
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So M isnow ¢(n+ 1) +[n“+(2-2¢c)n+1-c

Can drop [ .. . ] (through =) if it cannot become positive. Fails as n grows.
b. Can still show Q(n’)
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(i1) Suppose this holds for n:
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Now goonton + 1.



n+l n
S 2= 3%+ (n+1)?
i=1 =l
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= Ei2+n2+2n+1
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zcn2+n2+2n+1

=777
=c(n+ 1)2

The bridging step separates the bounding term from everything else:
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c(n+1)2+x=cn +n2+2n+1

x=cn2+n2+2n+1—cn2—2cn—c=n2+(2—2c)n+1—c
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So M isnow ¢(n+ 1) +[n“+(2-2¢c)n+1-c

Can drop [ .. . | (through =) if it cannot become negative.
Happens if 0 < ¢ < 1 (or as n grows).
APPROXIMATION BY INTEGRALS

For a monotonically increasing function (x <y = f(x)= f(y)):
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p. 1068 for picture proof



