PAGE
5

CSE 2320 Notes 8: Linked Lists

(Last updated 9/29/06 8:46 PM)
CLRS, 10.2-10.3

Linked Lists

1.
Singly-linked (forward) lists.

[image: image1.wmf]
Links may be:

Pointers

Subscripts

Disk addresses

Web URLs (a “logical” address vs. a “physical” address in the other three cases)

If the nodes have a key (i.e. a dictionary), should the list be ordered or unordered?

ASSUMPTION: Uniform access probabilities – equal likelihood for accessing each of n keys

[image: image2.wmf]

Most applications have many more hits than misses.

Many applications, however, need ordered retrieval (Successor, Predecessor).

2.
Keeping linked list code simple and efficient.

a.
Header – dummy node at beginning of list (even if no other nodes).

Avoids “first node special” cases:

Delete

Union

[image: image3.wmf]
Can be wasteful if an application needs large number of very short lists.

b.
Sentinel – dummy element at end of unordered table, unordered list, or tree.

(Book uses term “sentinel” for both headers and sentinels.)

Avoids checking for “end” of data structure.

[image: image4.wmf]
A[dummy] = key;

for (i = 0;

 A[i] != key;

 i++)

 ;

if (i == dummy)

 < not actually in table >

else

< really in table >

3.
Circular lists – can achieve (1) time in special cases.

[image: image5.wmf]

Example 1: Concatenate strings (sequences) stored as linked lists.

[image: image6.wmf]

temp = (*x);

(*x) = (*y);

(*y) = temp;

x = y;

Example 2: Free storage list – avoids malloc/free overhead

Including unneeded circular list in a garbage list:

[image: image7.wmf]
work = z->next;

z->next = G;

G = work;

4.
Doubly-linked lists.

[image: image8.wmf]
Can also have circular doubly-linked.

[image: image9.wmf]
Example 1: Flexibility to go both ways, but can also use the following clever solution if concurrent

access is not needed:

[image: image10.wmf]
Example 2: Student Database

•
Each student record is in a number of linked lists: ethnicity, major, place-of-birth,

previous colleges, etc. to allow production of reports.

•
Regardless of how a record is reached, it may be necessary to remove from one

list and insert in another (e.g. change of major). Trade-off:

•
If double linking is used, the “predecessor” is immediately available but more space is

used.

•
Without double linking, the “predecessor” is found by traversing the list. Suitability

depends on length of lists.

•
Insert node that x points to after node that p points to:

q=p->next;

x->next=q;

x->prev=p;

p->next=x;

q->prev=x;

•
Remove node that x points to:

p=x->prev;

q=x->next;

p->next=q;

q->prev=p;
Example 3: Maintain the following abstraction for n elements, 0 . . . n-1:

Specification: (could be used for handles in minHeap in Notes 5)

•
Initially all elements are free, but may become allocated.

•
A particular free element may be requested and it becomes allocated. (allocate())

•
A particular allocated element may be requested and it becomes free. (freeup())

•
A request to find and allocate any free element may be made. (allocateAny())

•
All operations are to be supported in
[image: image11.wmf] time (except initialization).

Implementation:

•
An array with n+1 elements is used. Element n acts as a header for a circular, doubly-linked list. Initialization:

n=4

0
1
2
3
4

prev
4
0
1
2
3

next
1
2
3
4
0

•
allocate(int x) is just deletion of x from a doubly-linked list:

p=prev[x];

q=next[x];

next[p]=q;

prev[q]=p;

prev[x]=next[x]=(-1);
•
freeup(int x) inserts the freed element x after the header.

q=next[n];

next[x]=q;

prev[x]=n;

next[n]=x;

prev[q]=x;
•
allocateAny() deletes the successor of the header:

p=next[n];

allocate(p);

return p;
•
Possible errors? (see circularFree.cpp)

CLRS Problem 10-1: Comparisons among lists
	
	unsorted, singly linked
	sorted, singly linked
	unsorted, doubly linked
	sorted,

doubly linked

	Search(L, k)
	((n)
	((n)
	((n)
	((n)

	Insert(L, x)
	((1)
	((n)
	((1)
	((n)

	Delete(L, x)
	((n)
	((n)
	((1)
	((1)

	Successor(L, x)
	((n)
	((1)
	((n)
	((1)

	Predecessor(L, x)
	((n)
	((n)
	((n)
	((1)

	Minimum(L)
	((n)
	((1)
	((n)
	((1)

	Maximum(L)
	((n)
	((n)
	((n)
	((1)

_1094145309.unknown

