CSE 2320 Notes 8: Linked Lists

CLRS, 10.2-10.3

Linked Lists

1. Singly-linked (forward) lists.

Links may be:
Pointers
Subscripts
Disk addresses
Web URLs (a "logical" address vs. a "physical" address in the other three cases)
If the nodes have a key (i.e. a dictionary), should the list be ordered or unordered?
ASSUMPTION: Uniform access probabilities - equal likelihood for accessing each of n keys

expected probes	hit	miss
unordered	$\frac{n+1}{2}$	n
ordered	$\frac{n+1}{2}$	$\frac{n+1}{2}$

Most applications have many more hits than misses.
Many applications, however, need ordered retrieval (SUCCESSOR, PREDECESSOR).
2. Keeping linked list code simple and efficient.
a. Header - dummy node at beginning of list (even if no other nodes).

Avoids "first node special" cases:

Delete

UNION

This pointer never changes

Can be wasteful if an application needs large number of very short lists.
b. Sentinel - dummy element at end of unordered table, unordered list, or tree.
(Book uses term "sentinel" for both headers and sentinels.)
Avoids checking for "end" of data structure.

3. Circular lists - can achieve $\Theta(1)$ time in special cases.

Example 1: Concatenate strings (sequences) stored as linked lists.

Example 2: Free storage list - avoids malloc/free overhead
Including unneeded circular list in a garbage list:

work = z->next;
z->next = G;
G = work;
4. Doubly-linked lists.

Can also have circular doubly-linked.

Example 1: Flexibility to go both ways, but can also use the following clever solution if concurrent access is not needed:

Example 2: Student Database

- Each student record is in a number of linked lists: ethnicity, major, place-of-birth, previous colleges, etc. to allow production of reports.
- Regardless of how a record is reached, it may be necessary to remove from one list and insert in another (e.g. change of major). Trade-off:
- If double linking is used, the "predecessor" is immediately available but more space is used.
- Without double linking, the "predecessor" is found by traversing the list. Suitability depends on length of lists.
- Insert node that x points to after node that p points to:

```
q=p->next;
x->next=q;
x->prev=p;
p->next=x;
q->prev=x;
```

- Remove node that x points to:

```
p=x->prev;
q=x->next;
p->next=q;
q->prev=p;
```

Example 3: Maintain the following abstraction for n elements, $0 \ldots n-1$:
Specification: (could be used for handles in minHeap in Notes 5)

- Initially all elements are free, but may become allocated.
- A particular free element may be requested and it becomes allocated. (allocate())
- A particular allocated element may be requested and it becomes free. (freeup())
- A request to find and allocate any free element may be made. (allocateAny ())
- All operations are to be supported in $\mathrm{O}(1)$ time (except initialization).

Implementation:

- An array with $n+1$ elements is used. Element n acts as a header for a circular, doublylinked list. Initialization:

n=4	0	1	2	3	4
prev	4	0	1	2	3
next	1	2	3	4	0

- allocate (int x) is just deletion of x from a doubly-linked list:
p=prev[x];
q=next[x];
next[p]=q;
prev[q]=p;
prev[x]=next[x]=(-1);
- freeup (int x) inserts the freed element x after the header.

```
q=next[n];
next[x]=q;
prev[x]=n;
next[n]=x;
prev[q]=x;
```

- allocateAny () deletes the successor of the header:
$\mathrm{p}=$ next[n];
allocate(p);
return p;
- Possible errors? (see circularFree.cpp)

CLRS Problem 10-1: Comparisons among lists

	unsorted, singly linked	sorted, singly linked	unsorted, doubly linked	sorted, doubly linked
$\operatorname{SEARCH}(L, k)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
$\operatorname{InSERT}(L, x)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$
$\operatorname{DeLEtE}(L, x)$	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
$\operatorname{SUCCESSOR}(L, x)$	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$
$\operatorname{PrEdECESSOR}(L, x)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$
$\operatorname{Minimum}(L)$	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$
$\operatorname{MAXImUM}(L)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$

