PAGE
3

CSE 2320 Notes 8: Linked Lists

CLRS, 10.2-10.3

Linked Lists

1.
Singly-linked (forward) lists.

[image: image1.wmf]
Links may be:

Pointers

Subscripts

Disk addresses

Web URLs (a “logical” address vs. a “physical” address in the other three cases)

If the nodes have a key (i.e. a dictionary), should the list be ordered or unordered?

ASSUMPTION: Uniform access probabilities – equal likelihood for accessing each key

[image: image2.wmf]

Most applications have many more hits than misses.

Many applications, however, need ordered retrieval (Successor, Predecessor).

2.
Keeping linked list code simple and efficient.

a.
Header – dummy node at beginning of list (even if no other nodes).

Avoids “first node special” cases:

Delete

Union

[image: image3.wmf]
Can be wasteful if an application needs large number of very short lists.

b.
Sentinel – dummy element at end of unordered table, unordered list, or tree.

(Book uses term “sentinel” for both headers and sentinels.)

Avoids checking for “end” of data structure.

[image: image4.wmf]
A[dummy] = key;

for (i = 0;

 A[i] != key;

 i++)

 ;

if (i == dummy)

 < not actually in table >

else

< really in table >

3.
Circular lists – can achieve (1) time in special cases.

[image: image5.wmf]

Example 1: Concatenate strings (sequences) stored as linked lists.

[image: image6.wmf]

temp = (*x);

(*x) = (*y);

(*y) = temp;

x = y;

Example 2: Free storage list – avoids malloc/free overhead

Including unneeded circular list in a garbage list:

[image: image7.wmf]
work = z->next;

z->next = G;

G = work;

4.
Doubly-linked lists.

[image: image8.wmf]
Can also have circular doubly-linked.

[image: image9.wmf]
Example 1: Flexibility to go both ways, but can also use the following clever solution if concurrent

access is not needed:

[image: image10.wmf]
Example 2: Student Database

•
Each student record is in a number of linked lists: ethnicity, major, place-of-birth,

previous colleges, etc. to allow production of reports.

•
Regardless of how a record is reached, it may be necessary to remove from one

list and insert in another (e.g. change of major). Trade-off:

•
If double linking is used, the predecessor is immediately available but more space is

used.

•
Without double linking, the predecessor is found by traversing the list. Suitability

depends on length of lists.

•
Insert node that x points to after node that p points to:

q=p->next;

x->next=q;

x->prev=p;

p->next=x;

q->prev=x;

•
Remove node that x points to:

p=x->prev;

q=x->next;

p->next=q;

q->prev=p;
Example 3: Maintain the following abstraction for n elements, 0 . . . n-1:

Specification:

•
Initially all elements are free, but may become allocated.

•
A particular free element may be requested and it becomes allocated. (allocate())

•
A particular allocated element may be requested and it becomes free. (freeup())

•
A request to find and allocate any free element may be made. (allocateAny())

•
All operations are to be supported in
[image: image11.wmf] time.

Implementation:

•
An array with n+1 elements is used. Element n acts as a header for a circular, doubly-linked list.

•
Element i has a prev value that is initially (n+i-1)%(n+1) and a next value that is initially (i+1)%(n+1).

•
allocate() is just deletion from a doubly-linked list.

•
freeup() inserts the freed element after the header.

•
allocateAny() deletes the successor of the header.

•
Possible errors?

CSE 2320 Notes 9: Rooted Trees
CLRS, 10.4
Trees

Representing Trees

Binary tree

Mandatory

Left

Right

Optional

Parent

Key

Data

[image: image12.wmf]
Rooted tree with linked siblings

[image: image13.wmf]
Mandatory

First Child

Right Sibling

Optional

Last Child

Left Sibling

Parent

Key

Data

Binary Tree Traversals (review)

1st Visit – Preorder

2nd Visit – Inorder

3rd Visit – Postorder

[image: image14.wmf]
Preorder

D B C E H F A I G

Inorder

C B H E D A G I F

Postorder

C H E B G I A F D

Binary Search Trees

Basic property – Go left for smaller keys. Go right for larger keys.

Which traversal lists the keys in ascending order?

[image: image15.wmf]

(Use of sentinel)

Operations:

1.
Search

2.
Minimum in tree

3.
Maximum in tree

4.
Successor of a node

5.
Predecessor of a node

6.
Insert

7.
Deletion

a.
Leaf

b.
Node with one child

c.
Node with two children

1.
Find node’s successor (convention)

2.
Successor has either

a.
Zero children – replace deleted node with successor

b.
One child (right) – point around successor; replace deleted node with successor

May also use tombstones and periodically recycle garbage.

Time for operations?

_1030378726.unknown

