
CSE 2320 Notes 8:  Linked Lists 
 
CLRS, 10.2-10.3 
 
LINKED LISTS 
 
1. Singly-linked (forward) lists. 
 
 

 
 
Links may be: 
 
 Pointers 
 
 Subscripts 
 
 Disk addresses 
 
 Web URLs (a “logical” address vs. a “physical” address in the other three cases) 
 
If the nodes have a key (i.e. a dictionary), should the list be ordered or unordered? 
 
ASSUMPTION:  Uniform access probabilities – equal likelihood for accessing each key 
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 Most applications have many more hits than misses. 
 
 Many applications, however, need ordered retrieval (SUCCESSOR, PREDECESSOR). 
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2. Keeping linked list code simple and efficient. 
 

a. Header – dummy node at beginning of list (even if no other nodes). 
 
 Avoids “first node special” cases: 
 
  DELETE 
 
  UNION 

 

This pointer
never changes  

 
Can be wasteful if an application needs large number of very short lists. 
 

b. Sentinel – dummy element at end of unordered table, unordered list, or tree. 
 (Book uses term “sentinel” for both headers and sentinels.)  
 
 Avoids checking for “end” of data structure. 
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A[dummy] = key; 
for (i = 0; 
     A[i] != key; 
     i++) 
  ; 
if (i == dummy) 
  < not actually in table > 
else 
 < really in table > 

 

 
3. Circular lists – can achieve Θ(1) time in special cases. 
 

 (header)  
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 Example 1:  Concatenate strings (sequences) stored as linked lists. 
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 temp = (*x); 
 (*x) = (*y); 
 (*y) = temp; 
 x = y; 

 
 Example 2:  Free storage list – avoids malloc/free overhead 
 

 Including unneeded circular list in a garbage list: 
 
G

z

A B C D
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G A B C D

I
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work = z->next; 
z->next = G; 
G = work; 

 
4. Doubly-linked lists. 
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Can also have circular doubly-linked. 
 

 
 
Example 1:  Flexibility to go both ways, but can also use the following clever solution if concurrent 
 access is not needed: 
 

p q  
 
Example 2:  Student Database 
 

• Each student record is in a number of linked lists:  ethnicity, major, place-of-birth, 
previous colleges, etc. to allow production of reports. 

 
• Regardless of how a record is reached, it may be necessary to remove from one 
 list and insert in another (e.g. change of major).  Trade-off: 
 

• If double linking is used, the predecessor is immediately available but more space is 
used. 

 
• Without double linking, the predecessor is found by traversing the list.  Suitability 
 depends on length of lists. 

 
• Insert node that x points to after node that p points to: 
 
 q=p->next; 
 x->next=q; 
 x->prev=p; 
 p->next=x; 
 q->prev=x; 
  
• Remove node that x points to: 

 
 p=x->prev; 
 q=x->next; 
 p->next=q; 
 q->prev=p; 
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Example 3:  Maintain the following abstraction for n elements, 0 . . . n-1: 
 

Specification: 
 

• Initially all elements are free, but may become allocated. 
 
• A particular free element may be requested and it becomes allocated.  (allocate()) 
 
• A particular allocated element may be requested  and it becomes free. (freeup()) 
 
• A request to find and allocate any free element may be made. (allocateAny()) 
 
• All operations are to be supported in 

! 

O 1( )  time. 
 
Implementation: 
 

• An array with n+1 elements is used.  Element n acts as a header for a circular, doubly-
linked list. 

 
 
 
 
 
 
• Element i has a prev value that is initially (n+i-1)%(n+1)  and a next value that is 

initially (i+1)%(n+1). 
 
• allocate() is just deletion from a doubly-linked list. 
 
• freeup() inserts the freed element after the header. 
 
• allocateAny() deletes the successor of the header. 
 
• Possible errors? 

 



CSE 2320 Notes 9:  Rooted Trees 
 
CLRS, 10.4 
 
TREES 
 
Representing Trees 
 

Binary tree 
 

Mandatory 
 

Left 
Right 

 
Optional 
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Rooted tree with linked siblings 
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Mandatory 
 

First Child 
Right Sibling 

 
Optional 
 

Last Child 
Left Sibling 
Parent 
Key 
Data 
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Binary Tree Traversals (review) 
 
 1st Visit – Preorder 
 
 2nd Visit – Inorder 
 
 3rd Visit – Postorder 
 

D
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AC E

F

G

H I

 

Preorder 
 
 D  B  C  E  H  F  A  I  G 
 
Inorder 
 
 C  B  H  E  D  A  G  I  F 
 
Postorder 
 
 C  H  E  B  G  I  A  F  D 
 

 
Binary Search Trees 
 
 Basic property – Go left for smaller keys.  Go right for larger keys. 
 
 Which traversal lists the keys in ascending order? 
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 (Use of sentinel) 
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 Operations: 
 

1. Search 
 
2. Minimum in tree 
 
3. Maximum in tree 
 
4. Successor of a node 
 
5. Predecessor of a node 
 
6. Insert 
 
7. Deletion 
 

a. Leaf 
 
b. Node with one child 
 
c. Node with two children 
 

1. Find node’s successor (convention) 
 
2. Successor has either 
 

a. Zero children – replace deleted node with successor 
 
b. One child (right) – point around successor; replace deleted node with successor 
 

May also use tombstones and periodically recycle garbage. 
 

Time for operations? 


