
CSE 2320 Notes 8:  Linked Lists 
 
CLRS, 10.2-10.3 
 
LINKED LISTS 
 
1. Singly-linked (forward) lists. 
 
 

 
 
Links may be: 
 
 Pointers 
 
 Subscripts 
 
 Disk addresses 
 
 Web URLs (a “logical” address vs. a “physical” address in the other three cases) 
 
If the nodes have a key (i.e. a dictionary), should the list be ordered or unordered? 
 
ASSUMPTION:  Uniform access probabilities – equal likelihood for accessing each key 
 

expected 
probes

hit miss

unordered

ordered

n + 1

2

n + 1

2

n + 1

2

n

 
 
 Most applications have many more hits than misses. 
 
 Many applications, however, need ordered retrieval (SUCCESSOR, PREDECESSOR). 
 
 



 2 
2. Keeping linked list code simple and efficient. 
 

a. Header – dummy node at beginning of list (even if no other nodes). 
 
 Avoids “first node special” cases: 
 
  DELETE 
 
  UNION 

 

This pointer
never changes  

 
Can be wasteful if an application needs large number of very short lists. 
 

b. Sentinel – dummy element at end of unordered table, unordered list, or tree. 
 (Book uses term “sentinel” for both headers and sentinels.)  
 
 Avoids checking for “end” of data structure. 
 
 

0

1

n-1

dummy (==n)

.

.

.

 
 
 

A[dummy] = key; 
for (i = 0; 
     A[i] != key; 
     i++) 
  ; 
if (i == dummy) 
  < not actually in table > 
else 
 < really in table > 

 

 
3. Circular lists – can achieve Θ(1) time in special cases. 
 

 (header)  
 



 3 
 Example 1:  Concatenate strings (sequences) stored as linked lists. 
 

 

A B C D

E F G H

x

y

A

B C DE

F G H

x

y  
 
 temp = (*x); 
 (*x) = (*y); 
 (*y) = temp; 
 x = y; 

 
 Example 2:  Free storage list – avoids malloc/free overhead 
 

 Including unneeded circular list in a garbage list: 
 
G

z

A B C D

E F H

G A B C D

I

EF H I  
 
work = z->next; 
z->next = G; 
G = work; 

 
4. Doubly-linked lists. 
 

 
 



 4 
Can also have circular doubly-linked. 
 

 
 
Example 1:  Flexibility to go both ways, but can also use the following clever solution if concurrent 
 access is not needed: 
 

p q  
 
Example 2:  Student Database 
 

• Each student record is in a number of linked lists:  ethnicity, major, place-of-birth, 
previous colleges, etc. to allow production of reports. 

 
• Regardless of how a record is reached, it may be necessary to remove from one 
 list and insert in another (e.g. change of major).  Trade-off: 
 

• If double linking is used, the predecessor is immediately available but more space is 
used. 

 
• Without double linking, the predecessor is found by traversing the list.  Suitability 
 depends on length of lists. 

 
• Insert node that x points to after node that p points to: 
 
 q=p->next; 
 x->next=q; 
 x->prev=p; 
 p->next=x; 
 q->prev=x; 
  
• Remove node that x points to: 

 
 p=x->prev; 
 q=x->next; 
 p->next=q; 
 q->prev=p; 



 5 
Example 3:  Maintain the following abstraction for n elements, 0 . . . n-1: 
 

Specification: 
 

• Initially all elements are free, but may become allocated. 
 
• A particular free element may be requested and it becomes allocated.  (allocate()) 
 
• A particular allocated element may be requested  and it becomes free. (freeup()) 
 
• A request to find and allocate any free element may be made. (allocateAny()) 
 
• All operations are to be supported in 

! 

O 1( )  time. 
 
Implementation: 
 

• An array with n+1 elements is used.  Element n acts as a header for a circular, doubly-
linked list. 

 
 
 
 
 
 
• Element i has a prev value that is initially (n+i-1)%(n+1)  and a next value that is 

initially (i+1)%(n+1). 
 
• allocate() is just deletion from a doubly-linked list. 
 
• freeup() inserts the freed element after the header. 
 
• allocateAny() deletes the successor of the header. 
 
• Possible errors? 

 



CSE 2320 Notes 9:  Rooted Trees 
 
CLRS, 10.4 
 
TREES 
 
Representing Trees 
 

Binary tree 
 

Mandatory 
 

Left 
Right 

 
Optional 
 

Parent 
Key 
Data 

Key

Left Right

A

B

C

D

 
 

Rooted tree with linked siblings 
 

D

B

A C

E F

G H I

D

B E F

A C G H I

 
 

Mandatory 
 

First Child 
Right Sibling 

 
Optional 
 

Last Child 
Left Sibling 
Parent 
Key 
Data 

 



 2 
Binary Tree Traversals (review) 
 
 1st Visit – Preorder 
 
 2nd Visit – Inorder 
 
 3rd Visit – Postorder 
 

D

B

AC E

F

G

H I

 

Preorder 
 
 D  B  C  E  H  F  A  I  G 
 
Inorder 
 
 C  B  H  E  D  A  G  I  F 
 
Postorder 
 
 C  H  E  B  G  I  A  F  D 
 

 
Binary Search Trees 
 
 Basic property – Go left for smaller keys.  Go right for larger keys. 
 
 Which traversal lists the keys in ascending order? 
 

 

100

20

12010 90

130

45

30 60

70

150

200

 
 
 (Use of sentinel) 
 



 3 
 Operations: 
 

1. Search 
 
2. Minimum in tree 
 
3. Maximum in tree 
 
4. Successor of a node 
 
5. Predecessor of a node 
 
6. Insert 
 
7. Deletion 
 

a. Leaf 
 
b. Node with one child 
 
c. Node with two children 
 

1. Find node’s successor (convention) 
 
2. Successor has either 
 

a. Zero children – replace deleted node with successor 
 
b. One child (right) – point around successor; replace deleted node with successor 
 

May also use tombstones and periodically recycle garbage. 
 

Time for operations? 


