CSE 2320 Notes 12: Graph Representations and Search

(Last updated 10/22/06 4:40 PM)
CLRS, 22.1-22.5

Graph Representations

Adjacency Matrices - for dense $\left(E=\Omega\left(V^{2}\right)\right)$ and dynamic graphs

Directed Graph

	0	1	2	3
0	0	1	1	0
1	0	0	0	1
2	0	0	0	1
3	0	0	0	0

Diagonal: Zero edges allowed for paths? (reflexive)
Undirected Graph

	0	1	2	3
0	0	1	1	0
1	1	0	0	1
2	1	0	0	1
3	0	1	1	0

Which is more general? Time to query for presence of an edge?
Adjacency Lists - for sparse $(E=\mathrm{O}(V))$ and static graphs
Directed

1. Time to query for presence of an edge?
2. Can convert between ordinary and inverted in $\Theta(V+E)$ time, assuming unordered lists.
3. These two structures can be integrated using both tables and a common set of nodes with two linked lists through each node.

Undirected:

Weights - Used to represent distances, capacities, or costs.
Entries in adjacency matrix.
Field in nodes of adjacency list.
Compressed Adjacency Lists - useful for sparse, static graphs


```
for (tail=0; tail<V; tail++)
    for (i=tailTab[tail]; i<tailTab[tail+1]; i++)
    < Process edge tail }->\mathrm{ headTab[i] >
```

Time to query for presence of an edge?

Breadth-First Search (Traversal) - Queue-Based

1. Input is connected, undirected graph

Source vertex is designated (assume 0)
Vertex colors and interpretations
a. White - undiscovered
b. Gray - presently in queue
c. Black - completely processed (all adjacent vertices have been discovered)

Possible outputs:
a. BFS number
b. Distance (hops) from source
c. Predecessor on BFS tree

Label node with $\mathrm{a} / \mathrm{b} / \mathrm{c}$

Queue:
Time:
a. Initialization $(\Theta(\mathrm{V}))$
b. Process each edge twice $(\Theta(E))$
2. For disconnected, undirected graph

Initialize all vertices as white
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{V} ; \mathrm{i}++$)
if vertex i is white
Run BFS with i as source
Number of restarts is the number of components.
Can also use on directed graph.
Diameter of Tree - Application of BFS

1. Choose arbitrary source for BFS. Run BFS and select any vertex X at maximum distance ("hops") from source.

2. Run second BFS using X as source. X will be at one end of a diameter and any vertex at maximum distance from X can be the other end of the diameter.

Takes $\Theta(V+E)$ time.

Usually applied to a directed graph.
Vertex colors and interpretations
a. White - undiscovered
b. Gray - presently in stack
c. Black - completely processed (all adjacent vertices have been discovered)

Possible outputs:
a. Discovery time
b. Finish time
c. Predecessor on DFS tree
d. Edge types

Processing:
a. Change vertex from white \rightarrow gray the first time it enters stack and assign discovery time (using counter).
b. When a vertex (and pointer to its adjacency list) is popped, check for next adjacent vertex and push this vertex again.
c. If no remaining adjacent vertices, then change vertex from gray \rightarrow black and assign finish time.

Like BFS, DFS takes $\Theta(V+E)$ time.
Relationship between vertex and adjacent vertex determines the edge type.
a. Unvisited (white) \Rightarrow tree edge

b. On the stack (gray indicating ancestor) \Rightarrow back edge

c. Previously visited, not on stack (black), but known to be descendant \Rightarrow forward edge

1. Find path of tree edges? TEDIOUS
2. discovery(tail) < discovery(head)

d. None of the above . . . Not on stack (black) and not a descendant \Rightarrow cross edge

Test using discovery(tail) $>$ discovery (head)

Example:

Example - available from course web page

Vertex		discove		finish	predecessor
0		1		28	-1
1		2		17	0
2		18		27	0
3		3		16	1
4		4		15	3
5		19		26	2
6		20		23	5
7		5		14	4
8		6		13	7
9		24		25	5
10		21		22	6
11		7		12	8
12		8		11	11
13		9		10	12
Edge T	Tail	1 Head	Typ		
0		$0 \quad 1$			
1		02	tr		
2		13	tr		
3		14		ard	
4		25	tr		
5		26		ard	
6		34	tr		
7		37		ard	
8		47	tr		
9		54			
10		56	tr		
11		59	tr		
12		610	tr		
13		78	tr		
14		711		ard	
15		84	ba		
16		811	tr		
17		96			
18		911			
19	10	011			
20	11	112			
21	12	213	tr		
22	13	311	ba		

Undirected - Can't have cross or forward edges:

Restarts - handled like BFS

Topological Sort of a Directed Graph
Linear ordering of all vertices in a graph.
Vertex x precedes y in ordering if there is a path from x to y in graph.
Apply DFS:

1. Back edge \Leftrightarrow graph has a cycle (no topological ordering).
2. When vertex turns black, insert at beginning of ordering (ordering is reverse of finish times).

Strongly Connected Components

Equivalence Relation - definition (reflexive, symmetric, transitive)

1. Perform DFS. When vertex turns black \Rightarrow insert at beginning of list. ($\left.\begin{array}{llllllll}3 & 6 & 8 & 1 & 7 & 2 & 4 & 0\end{array}\right)$ 5)
2. Reverse edges.

3. Perform DFS, but each restart chooses the first white vertex in list from 1. Vertices discovered within the same restart are in the same strong component.

Observation: If there is a path from x to y and no path from y to x , then finish $(\mathrm{x})>$ finish(y) (first DFS).
This implies that the reverse edge (y, x) corresponding to an original edge (x, y) without a "return path" will be a cross edge during $2^{\text {nd }}$ DFS. The head vertex y will be in a SCC that has already been output.

Takes $\Theta(V+E)$ time.

