
CSE 2320 Notes 12:  Graph Representations and Search 
 

(Last updated 10/22/06 4:40 PM) 
 
CLRS, 22.1-22.5 
 
GRAPH REPRESENTATIONS 
 

Adjacency Matrices – for dense 
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  Diagonal:  Zero edges allowed for  paths?  (reflexive) 
 
 Undirected Graph 

 

0 1 2 3

0 0 1 1 0

1 1 0 0 1

2 1 0 0 1

3 0 1 1 0

0 1

2 3  
 
 Which is more general?  Time to query for presence of an edge? 
 
Adjacency Lists – for sparse 
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1. Time to query for presence of an edge? 
 
2. Can convert between ordinary and inverted in Θ(V + E) time, assuming unordered lists. 
 
3. These two structures can be integrated using both tables and a common set of nodes with two 

linked lists through each node. 
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Undirected: 
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Weights – Used to represent distances, capacities, or costs. 
 
 Entries in adjacency matrix. 
 
 Field in nodes of adjacency list. 
 
Compressed Adjacency Lists – useful for sparse, static graphs 
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 for (tail=0; tail<V; tail++) 
  for (i=tailTab[tail]; i<tailTab[tail+1]; i++) 
   < Process edge tail → headTab[i] > 
 
 
Time to query for presence of an edge?
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BREADTH-FIRST SEARCH (Traversal) – Queue-Based 
 
1. Input is connected, undirected graph 
 
 Source vertex is designated (assume 0) 
 
 Vertex colors and interpretations 
 

a. White – undiscovered 
 
b. Gray – presently in queue 
 
c. Black – completely processed (all adjacent vertices have been discovered) 
 
Possible outputs: 
 
a. BFS number 
 
b. Distance (hops) from source 
 
c. Predecessor on BFS tree 
 
Label node with a/b/c 
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Queue:  
 
Time: 
 

a. Initialization (Θ(V)) 
 
b. Process each edge twice (Θ(E)) 
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2. For disconnected, undirected graph 
 
 Initialize all vertices as white 
 for (i=0; i<V; i++) 
  if vertex i is white 

  Run BFS with i as source 
 
Number of restarts is the number of components. 
 
Can also use on directed graph. 
 
Diameter of Tree – Application of BFS 
 
1. Choose arbitrary source for BFS.  Run BFS and select any vertex X at maximum distance (“hops”) 

from source. 
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2. Run second BFS using X as source.  X will be at one end of a diameter and any vertex at maximum 

distance from X can be the other end of the diameter. 
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Takes Θ(V + E) time. 
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DEPTH-FIRST SEARCH (Traversal) – Stack/Recursion-Based 
 
Usually applied to a directed graph. 
 
Vertex colors and interpretations 
 
a. White – undiscovered 
 
b. Gray – presently in stack 
 
c. Black – completely processed (all adjacent vertices have been discovered) 
 
Possible outputs: 
 
a. Discovery time 
 
b. Finish time 
 
c. Predecessor on DFS tree 
 
d. Edge types 
 
Processing: 
 
a. Change vertex from white → gray the first time it enters stack and assign discovery time (using 

counter). 
 
b.  When a vertex (and pointer to its adjacency list) is popped, check for next adjacent vertex and push 

this vertex again. 
 
c. If no remaining adjacent vertices, then change vertex from gray → black and assign finish time. 
 
Like BFS, DFS takes Θ(V + E) time. 
 
Relationship between vertex and adjacent vertex determines the edge type. 
 
a. Unvisited (white) ⇒ tree edge 
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b. On the stack (gray indicating ancestor) ⇒ back edge 
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c. Previously visited, not on stack (black), but known to be descendant ⇒ forward edge 
 

1. Find path of tree edges?  TEDIOUS 
 
2. discovery(tail) < discovery(head) 
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d. None of the above . . . Not on stack (black) and not a descendant ⇒ cross edge 
 
 Test using discovery(tail) > discovery(head) 
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Example: 
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Example – available from course web page 
 

 

 
Vertex  discovery    finish     predecessor 
   0        1          28           -1 
   1        2          17            0 
   2       18          27            0 
   3        3          16            1 
   4        4          15            3 
   5       19          26            2 
   6       20          23            5 
   7        5          14            4 
   8        6          13            7 
   9       24          25            5 
  10       21          22            6 
  11        7          12            8 
  12        8          11           11 
  13        9          10           12 
Edge Tail Head Type 
   0    0    1  tree 
   1    0    2  tree 
   2    1    3  tree 
   3    1    4  forward 
   4    2    5  tree 
   5    2    6  forward 
   6    3    4  tree 
   7    3    7  forward 
   8    4    7  tree 
   9    5    4  cross 
  10    5    6  tree 
  11    5    9  tree 
  12    6   10  tree 
  13    7    8  tree 
  14    7   11  forward 
  15    8    4  back 
  16    8   11  tree 
  17    9    6  cross 
  18    9   11  cross 
  19   10   11  cross 
  20   11   12  tree 
  21   12   13  tree 
  22   13   11  back 
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Undirected – Can’t have cross or forward edges: 
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Restarts – handled like BFS 
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TOPOLOGICAL SORT OF A DIRECTED GRAPH 
 
Linear ordering of all vertices in a graph. 
 
Vertex x precedes y in ordering if there is a path from x to y in graph. 
 
Apply DFS: 
 
1. Back edge ⇔ graph has a cycle (no topological ordering). 
 
2. When vertex turns black, insert at beginning of ordering (ordering is reverse of finish times). 
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STRONGLY CONNECTED COMPONENTS 
 
Equivalence Relation – definition (reflexive, symmetric, transitive) 
 

X Y Z
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1. Perform DFS.  When vertex turns black ⇒ insert at beginning of list.  (3  6  8  1  7  2  4  0  9  5) 
 
2. Reverse edges. 
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3. Perform DFS, but each restart chooses the first white vertex in list from 1.  Vertices discovered 

within the same restart are in the same strong component. 
 
Observation:  If there is a path from x to y and no path from y to x, then finish(x) > finish(y) (first DFS). 
 
This implies that the reverse edge (y, x) corresponding to an original edge (x, y) without a “return path” 
will be a cross edge during 2nd DFS.  The head vertex y will be in a SCC that has already been output. 
 
Takes Θ(V + E) time. 


