
CSE 2320 Notes 12: Graph Representations and Search

(Last updated 10/22/06 4:40 PM)

CLRS, 22.1-22.5

GRAPH REPRESENTATIONS

Adjacency Matrices – for dense

!

E =" V
2#

$
% &

'
(

$
%

&

'
(and dynamic graphs

 Directed Graph

0 1 2 3

0 0 1 1 0

1 0 0 0 1

2 0 0 0 1

3 0 0 0 0

0 1

2 3

 Diagonal: Zero edges allowed for paths? (reflexive)

 Undirected Graph

0 1 2 3

0 0 1 1 0

1 1 0 0 1

2 1 0 0 1

3 0 1 1 0

0 1

2 3

 Which is more general? Time to query for presence of an edge?

Adjacency Lists – for sparse

!

E =" V()() and static graphs

 Directed

0

1

2

3

Tails
1 2

3

3

Ordinary: Inverted:

0

1

2

3

Heads

1 2

0

0

Heads
Tails

1. Time to query for presence of an edge?

2. Can convert between ordinary and inverted in Θ(V + E) time, assuming unordered lists.

3. These two structures can be integrated using both tables and a common set of nodes with two

linked lists through each node.

 2
Undirected:

0

1

2

3

1 2

0

0

3

3

1 2

Weights – Used to represent distances, capacities, or costs.

 Entries in adjacency matrix.

 Field in nodes of adjacency list.

Compressed Adjacency Lists – useful for sparse, static graphs

i

j

k

l

tailTab headTab

i
i+1

j

k
l

0

1

2

3

4

tailTab headTab

0
1
2
3
4
5

0
2
4
4
6
6

0
1
2
3
4
5

1
3
2
4
2
4

0

1

2

3

4

tailTab headTab

0
1
2
3
4
5

0
2
5
7
10
12

0
1
2
3
4
5
6
7
8
9
10
11

1
3
0
2
4
1
3
0
2
4
1
3

 for (tail=0; tail<V; tail++)
 for (i=tailTab[tail]; i<tailTab[tail+1]; i++)
 < Process edge tail → headTab[i] >

Time to query for presence of an edge?

 3
BREADTH-FIRST SEARCH (Traversal) – Queue-Based

1. Input is connected, undirected graph

 Source vertex is designated (assume 0)

 Vertex colors and interpretations

a. White – undiscovered

b. Gray – presently in queue

c. Black – completely processed (all adjacent vertices have been discovered)

Possible outputs:

a. BFS number

b. Distance (hops) from source

c. Predecessor on BFS tree

Label node with a/b/c

0

1

2 4

53

7 8

6

 / /

 / /

 / /

 / /

 / /

 / /

 / /

 / / / /

Queue:

Time:

a. Initialization (Θ(V))

b. Process each edge twice (Θ(E))

 4
2. For disconnected, undirected graph

 Initialize all vertices as white
 for (i=0; i<V; i++)
 if vertex i is white

 Run BFS with i as source

Number of restarts is the number of components.

Can also use on directed graph.

Diameter of Tree – Application of BFS

1. Choose arbitrary source for BFS. Run BFS and select any vertex X at maximum distance (“hops”)

from source.

15 0 11

16 6

5

4

12 13 18

17

10

1

2 14

8

3 9 7

2. Run second BFS using X as source. X will be at one end of a diameter and any vertex at maximum

distance from X can be the other end of the diameter.

15 0 11

16 6

5

4

12 13 18

17

10

1

2 14

8

3 9 7

Takes Θ(V + E) time.

 5
DEPTH-FIRST SEARCH (Traversal) – Stack/Recursion-Based

Usually applied to a directed graph.

Vertex colors and interpretations

a. White – undiscovered

b. Gray – presently in stack

c. Black – completely processed (all adjacent vertices have been discovered)

Possible outputs:

a. Discovery time

b. Finish time

c. Predecessor on DFS tree

d. Edge types

Processing:

a. Change vertex from white → gray the first time it enters stack and assign discovery time (using

counter).

b. When a vertex (and pointer to its adjacency list) is popped, check for next adjacent vertex and push

this vertex again.

c. If no remaining adjacent vertices, then change vertex from gray → black and assign finish time.

Like BFS, DFS takes Θ(V + E) time.

Relationship between vertex and adjacent vertex determines the edge type.

a. Unvisited (white) ⇒ tree edge

0

1

2

3

4

5 6

/

/

/ / / /

/

 6
b. On the stack (gray indicating ancestor) ⇒ back edge

0

1

2

3

/

/

/

/

0

1

2

3

4

5 6

/

/

/ / / /

/

c. Previously visited, not on stack (black), but known to be descendant ⇒ forward edge

1. Find path of tree edges? TEDIOUS

2. discovery(tail) < discovery(head)

0

1

2

3

/

/

/

/

0

1

2

3

4

5 6

/

/

/ / / /

/

d. None of the above . . . Not on stack (black) and not a descendant ⇒ cross edge

 Test using discovery(tail) > discovery(head)

0

3

2

1

/

/

/

/

0

1

2

3

4

5 6

/

/

/
/ /

/

/

 7
Example:

0

1

2 3

4

5 6

/

/

/ / / /

/

Example – available from course web page

Vertex discovery finish predecessor
 0 1 28 -1
 1 2 17 0
 2 18 27 0
 3 3 16 1
 4 4 15 3
 5 19 26 2
 6 20 23 5
 7 5 14 4
 8 6 13 7
 9 24 25 5
 10 21 22 6
 11 7 12 8
 12 8 11 11
 13 9 10 12
Edge Tail Head Type
 0 0 1 tree
 1 0 2 tree
 2 1 3 tree
 3 1 4 forward
 4 2 5 tree
 5 2 6 forward
 6 3 4 tree
 7 3 7 forward
 8 4 7 tree
 9 5 4 cross
 10 5 6 tree
 11 5 9 tree
 12 6 10 tree
 13 7 8 tree
 14 7 11 forward
 15 8 4 back
 16 8 11 tree
 17 9 6 cross
 18 9 11 cross
 19 10 11 cross
 20 11 12 tree
 21 12 13 tree
 22 13 11 back

 8
Undirected – Can’t have cross or forward edges:

0

1

2 3

4

5 6

/

/

/ / / /

/

Restarts – handled like BFS

0

1 2

3

4 5 6

7

/

/ / /

/

/ /

/

TOPOLOGICAL SORT OF A DIRECTED GRAPH

Linear ordering of all vertices in a graph.

Vertex x precedes y in ordering if there is a path from x to y in graph.

Apply DFS:

1. Back edge ⇔ graph has a cycle (no topological ordering).

2. When vertex turns black, insert at beginning of ordering (ordering is reverse of finish times).

0

1

2

3

4

5

67

/

/

/

/

/

/

/

/

3 4 7 2 6 1 0 5

 9
STRONGLY CONNECTED COMPONENTS

Equivalence Relation – definition (reflexive, symmetric, transitive)

X Y Z

0

1

2
3

4

5

6

7
8

9

/

/ / /

/ /

/ / /

/

1. Perform DFS. When vertex turns black ⇒ insert at beginning of list. (3 6 8 1 7 2 4 0 9 5)

2. Reverse edges.

0

1

2
3

4

5

6

7
8

9

/

/ / /

/ /

/ / /

/

3. Perform DFS, but each restart chooses the first white vertex in list from 1. Vertices discovered

within the same restart are in the same strong component.

Observation: If there is a path from x to y and no path from y to x, then finish(x) > finish(y) (first DFS).

This implies that the reverse edge (y, x) corresponding to an original edge (x, y) without a “return path”
will be a cross edge during 2nd DFS. The head vertex y will be in a SCC that has already been output.

Takes Θ(V + E) time.

