PAGE
5

CSE 2320 Notes 13: Minimum Spanning Trees

(Last updated 11/1/06 7:50 PM)
CLRS, 23.1, 23.2 - omit Kruskal's algorithm

Concepts

Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the vertices. (AKA bottleneck shortest path tree)

Observation: Suppose S and T partition V such that

1.
S (T = (
2.
S (T = V

3.
|S| > 0 and |T| > 0

then there is some MST that includes a minimum weight edge {s, t} with s (S and t (T.

Proof:

Suppose there is a partition with a minimum weight edge {s, t}.

A spanning tree without {s, t} must still have a path between s and t.

Since s (S and t (T, there must be at least one edge {x, y} on this path with x (S and y (T.

By removing {x, y} and including {s, t}, a spanning tree whose total weight is no larger is obtained. (((
[image: image1.wmf]
The proof suggests a slow approach - remove a maximum weight edge from every cycle:

[image: image2.wmf]
Prim’s algorithm applies the observation by having S as vertices connected together by a subtree of the eventual MST and T contains vertices that have not yet been connected. The algorithm avoids including the maximum weight edges for all cycles.
Prim’s Algorithm – Three versions

1.
“Memoryless” – Only saves partial MST and current partition. (primMemoryless.c)

Place any vertex x (V in S.

T = V – {x}

while T ((

Find the minimum weight edge {s, t} over all t (T and all s (S. (Scan adj. list for each t)

Include {s, t} in MST.

T = T – {t}

S = S ({t}

Since no substantial data structures are used, this takes
[image: image3.wmf] time.

Which edge does Prim’s algorithm select next?

[image: image4.wmf]
2.
 Maintains T-table that provides the closest vertex in S for each vertex in T. (primTable.c)

Eliminates scanning all T adjacency lists in every phase, but still scans the list of the last vertex moved from T to S.

Place any vertex x (V in S.

T = V – {x}

for each t (T

Initialize T-table entry with weight of {t, x} (or (if non-existent) and x as best-S-neighbor

while T ((

Scan T-table entries for the minimum weight edge {t, best-S-neighbor[t]}

over all t (T and all s (S.

Include edge {t, best-S-neighbor[t]} in MST.

T = T – {t}

S = S ({t}

for each vertex x in adjacency list of t

if x (T and weight of {x, t} is smaller than T-weight[x]

T-weight[x] = weight of {x, t}

best-S-neighbor[x] = t

What are the T-table contents before and after the next MST vertex is selected?

[image: image5.wmf]
Analysis:

Initializing the T-table takes ((V).

Scans of T-table entries contribute ((V2).

Traversals of adjacency lists contribute ((E).

[image: image6.wmf] overall worst-case.

3.
Replace T-table by a heap. (primHeap.cpp, minHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move from T to S improves.

Place any vertex x (V in S.

T = V – {x}

for each t (T

Load T-heap entry with weight (as the priority) of {t, x} (or (if non-existent) and x as

best-S-neighbor

Build-Min-Heap(T-heap)

while T ((

Use Heap-Extract-Min to obtain T-heap entry with the minimum weight edge over all t (T

and all s (S.

Include edge {t, best-S-neighbor[t]} in MST.

T = T – {t}

S = S ({t}

for each vertex x in adjacency list of t

if x (T and weight of {x, t} is smaller than T-weight[x]

T-weight[x] = weight of {x, t}

best-S-neighbor[x] = t

Min-Heap-Decrease-Key(T-heap)

Analysis:

Initializing the T-heap takes ((V).

Total cost for Heap-Extract-Mins is ((V log V).

Traversals of adjacency lists and Min-Heap-Decrease-Keys contribute ((E log V).

[image: image7.wmf]overall worst-case, since E > V.

Which version is the fastest?

Sparse
[image: image8.wmf]
Dense
[image: image9.wmf]

1.

[image: image10.wmf]

[image: image11.wmf]

[image: image12.wmf]

2.

[image: image13.wmf]

[image: image14.wmf]

[image: image15.wmf]

3.

[image: image16.wmf]

[image: image17.wmf]

[image: image18.wmf]
True or False (Prove or give counterexample):

Suppose an MST has been found for a graph.

Claim: For any pair of vertices, there is a shortest path that uses only MST edges.

 True or False:

If no two edges in an undirected graph have the same weight, then the MST is unique.

_1063644099.unknown

_1063644239.unknown

_1063644269.unknown

_1063644303.unknown

_1063644334.unknown

_1063644263.unknown

_1063644162.unknown

_1063644138.unknown

_1063207235.unknown

_1063644042.unknown

_1063644073.unknown

_1063644037.unknown

_1063207209.unknown

