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CSE 2320 Notes 13:  Minimum Spanning Trees

(Last updated 11/1/06 7:50 PM)
CLRS, 23.1, 23.2 - omit Kruskal's algorithm

Concepts

Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the vertices.  (AKA bottleneck shortest path tree)

Observation:  Suppose S and T partition V such that

1.
S ( T = (
2.
S ( T = V

3.
|S| > 0 and |T| > 0

then there is some MST that includes a minimum weight edge {s, t} with s ( S and t ( T.

Proof:

Suppose there is a partition with a minimum weight edge {s, t}.

A spanning tree without {s, t} must still have a path between s and t.

Since s ( S and t ( T, there must be at least one edge {x, y} on this path with x ( S and y ( T.

By removing {x, y} and including {s, t}, a spanning tree whose total weight is no larger is obtained.  (((
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The proof suggests a slow approach - remove a maximum weight edge from every cycle:
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Prim’s algorithm applies the observation by having S as vertices connected together by a subtree of the eventual MST and T contains vertices that have not yet been connected.  The algorithm avoids including the maximum weight edges for all cycles.
Prim’s Algorithm – Three versions

1.
“Memoryless” – Only saves partial MST and current partition. (primMemoryless.c)

Place any vertex x ( V in S.

T = V – {x}

while T ( (

Find the minimum weight edge {s, t} over all t ( T and all s ( S.  (Scan adj. list for each t)

Include {s, t} in MST.


T = T – {t}


S = S ( {t}

Since no substantial data structures are used, this takes 
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Which edge does Prim’s algorithm select next?
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2.
 Maintains T-table that provides the closest vertex in S for each vertex in T.  (primTable.c)

Eliminates scanning all T adjacency lists in every phase, but still scans the list of the last vertex moved from T to S.

Place any vertex x ( V in S.

T = V – {x}

for each t ( T


Initialize T-table entry with weight of {t, x} (or ( if non-existent) and x as best-S-neighbor

while T ( (

Scan T-table entries for the minimum weight edge {t, best-S-neighbor[t]}

over all t ( T and all s ( S.

Include edge {t, best-S-neighbor[t]} in MST.


T = T – {t}


S = S ( {t}


for each vertex x in adjacency list of t



if x ( T and weight of {x, t} is smaller than T-weight[x]




T-weight[x] = weight of {x, t}




best-S-neighbor[x] = t

What are the T-table contents before and after the next MST vertex is selected?
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Analysis:

Initializing the T-table takes ((V).

Scans of T-table entries contribute ((V2).

Traversals of adjacency lists contribute ((E).


[image: image6.wmf] overall worst-case.

3.
Replace T-table by a heap.  (primHeap.cpp, minHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move from T to S improves.

Place any vertex x ( V in S.

T = V – {x}

for each t ( T


Load T-heap entry with weight (as the priority) of {t, x} (or ( if non-existent) and x as 

best-S-neighbor

Build-Min-Heap(T-heap)

while T ( (

Use Heap-Extract-Min to obtain T-heap entry with the minimum weight edge over all t ( T

and all s ( S.

Include edge {t, best-S-neighbor[t]} in MST.


T = T – {t}


S = S ( {t}


for each vertex x in adjacency list of t



if x ( T and weight of {x, t} is smaller than T-weight[x]




T-weight[x] = weight of {x, t}




best-S-neighbor[x] = t




Min-Heap-Decrease-Key(T-heap)

Analysis:


Initializing the T-heap takes ((V).

Total cost for Heap-Extract-Mins is ((V log V).

Traversals of adjacency lists and Min-Heap-Decrease-Keys contribute ((E log V).
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Which version is the fastest?



Sparse 
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Dense 
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1.
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2.
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3.
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True or False (Prove or give counterexample):

Suppose an MST has been found for a graph.

Claim:  For any pair of vertices, there is a shortest path that uses only MST edges.

 True or False:

If no two edges in an undirected graph have the same weight, then the MST is unique.
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