CSE 2320 Notes 13: Minimum Spanning Trees

> (Last updated 11/1/06 7:50 PM)

CLRS, 23.1, 23.2 - omit Kruskal's algorithm

Concepts

Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the vertices. (AKA bottleneck shortest path tree)

Observation: Suppose S and T partition V such that

1. $\mathrm{S} \cap \mathrm{T}=\varnothing$
2. $\mathrm{S} \cup \mathrm{T}=\mathrm{V}$
3. $|S|>0$ and $|T|>0$
then there is some MST that includes a minimum weight edge $\{s, t\}$ with $s \in S$ and $t \in T$.
Proof:
Suppose there is a partition with a minimum weight edge $\{\mathrm{s}, \mathrm{t}\}$.
A spanning tree without $\{\mathrm{s}, \mathrm{t}\}$ must still have a path between s and t .
Since $\mathrm{s} \in \mathrm{S}$ and $\mathrm{t} \in \mathrm{T}$, there must be at least one edge $\{\mathrm{x}, \mathrm{y}\}$ on this path with $\mathrm{x} \in \mathrm{S}$ and $\mathrm{y} \in \mathrm{T}$.
By removing $\{\mathrm{x}, \mathrm{y}\}$ and including $\{\mathrm{s}, \mathrm{t}\}$, a spanning tree whose total weight is no larger is obtained.

The proof suggests a slow approach - remove a maximum weight edge from every cycle:

Prim's algorithm applies the observation by having S as vertices connected together by a subtree of the eventual MST and T contains vertices that have not yet been connected. The algorithm avoids including the maximum weight edges for all cycles.

Prim's Algorithm - Three versions

1. "Memoryless" - Only saves partial MST and current partition. (primMemoryless.c)

Place any vertex $x \in V$ in S.
$\mathrm{T}=\mathrm{V}-\{\mathrm{x}\}$
while $\mathrm{T} \neq \varnothing$
Find the minimum weight edge $\{\mathrm{s}, \mathrm{t}\}$ over all $\mathrm{t} \in \mathrm{T}$ and all $\mathrm{s} \in \mathrm{S}$. (Scan adj. list for each t)
Include $\{\mathrm{s}, \mathrm{t}\}$ in MST.

$$
\mathrm{T}=\mathrm{T}-\{\mathrm{t}\}
$$

$$
\mathrm{S}=\mathrm{S} \cup\{\mathrm{t}\}
$$

Since no substantial data structures are used, this takes $\Theta(E V)$ time.
Which edge does Prim's algorithm select next?

2. Maintains T-table that provides the closest vertex in S for each vertex in T. (primTable.c)

Eliminates scanning all T adjacency lists in every phase, but still scans the list of the last vertex moved from T to S .

Place any vertex $x \in V$ in S.
$\mathrm{T}=\mathrm{V}-\{\mathrm{x}\}$
for each $t \in T$
Initialize T-table entry with weight of $\{\mathrm{t}, \mathrm{x}\}$ (or ∞ if non-existent) and x as best-S-neighbor
while $\mathrm{T} \neq \varnothing$
Scan T-table entries for the minimum weight edge $\{\mathrm{t}$, best-S-neighbor $[\mathrm{t}]\}$ over all $t \in T$ and all $s \in S$.
Include edge $\{\mathrm{t}$, best-S-neighbor $[\mathrm{t}]\}$ in MST.
$\mathrm{T}=\mathrm{T}-\{\mathrm{t}\}$
$\mathrm{S}=\mathrm{S} \cup\{\mathrm{t}\}$
for each vertex x in adjacency list of t
if $x \in T$ and weight of $\{x, t\}$ is smaller than T-weight $[x]$
T-weight $[\mathrm{x}]=$ weight of $\{\mathrm{x}, \mathrm{t}\}$
best-S-neighbor $[\mathrm{x}]=\mathrm{t}$
What are the T-table contents before and after the next MST vertex is selected?

Analysis:
Initializing the T-table takes $\Theta(\mathrm{V})$.
Scans of T-table entries contribute $\Theta\left(\mathrm{V}^{2}\right)$.
Traversals of adjacency lists contribute $\Theta(\mathrm{E})$.
$\Theta\left(V^{2}+E\right)$ overall worst-case.

3. Replace T-table by a heap. (primHeap.cpp, minHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move from T to S improves.

Place any vertex $x \in V$ in S.
$\mathrm{T}=\mathrm{V}-\{\mathrm{x}\}$
for each $t \in T$
Load T-heap entry with weight (as the priority) of $\{\mathrm{t}, \mathrm{x}\}$ (or ∞ if non-existent) and x as best-S-neighbor
Build-Min-Heap(T-heap)
while $\mathrm{T} \neq \varnothing$
Use Heap-Extract-Min to obtain T-heap entry with the minimum weight edge over all $\mathrm{t} \in \mathrm{T}$ and all $s \in S$.
Include edge $\{\mathrm{t}$, best-S-neighbor $[\mathrm{t}]\}$ in MST.
$\mathrm{T}=\mathrm{T}-\{\mathrm{t}\}$
$\mathrm{S}=\mathrm{S} \cup\{\mathrm{t}\}$
for each vertex x in adjacency list of t
if $x \in T$ and weight of $\{x, t\}$ is smaller than T-weight $[x]$
T-weight $[x]=$ weight of $\{x, t\}$
best-S-neighbor [x] = t
Min-Heap-Decrease-Key(T-heap)
Analysis:
Initializing the T-heap takes $\Theta(\mathrm{V})$.
Total cost for Heap-Extract-Mins is $\Theta(\mathrm{V} \log \mathrm{V})$.
Traversals of adjacency lists and Min-HEAP-DECREASE-KEYs contribute Θ (E $\log \mathrm{V})$.
$\Theta(E \log V)$ overall worst-case, since $\mathrm{E}>\mathrm{V}$.

Which version is the fastest?

$$
\text { Sparse }(E=\mathrm{O}(V)) \quad \text { Dense }\left(E=\Omega\left(V^{2}\right)\right)
$$

1. $\Theta(E V)$
$\Theta\left(V^{2}\right)$
2. $\Theta\left(V^{2}+E\right)$
$\Theta\left(V^{2}\right)$
$\Theta\left(V^{3}\right)$
$\Theta\left(V^{2}\right)$
3. $\Theta(E \log V)$
$\Theta(V \log V)$

$$
\Theta\left(V^{2} \log V\right)
$$

True or False (Prove or give counterexample):
Suppose an MST has been found for a graph.
Claim: For any pair of vertices, there is a shortest path that uses only MST edges.
True or False:
If no two edges in an undirected graph have the same weight, then the MST is unique.

