
CSE 2320 Notes 13:  Minimum Spanning Trees 
 

(Last updated 11/1/06 7:50 PM) 
 
CLRS, 23.1, 23.2 - omit Kruskal's algorithm 
 
CONCEPTS 
 
Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the 
vertices.  (AKA bottleneck shortest path tree) 
 
Observation:  Suppose S and T partition V such that 
 

1. S ∩ T = ∅ 
 
2. S ∪ T = V 
 
3. |S| > 0 and |T| > 0 

 
then there is some MST that includes a minimum weight edge {s, t} with s ∈ S and t ∈ T. 
 
Proof: 
 

Suppose there is a partition with a minimum weight edge {s, t}. 
 
A spanning tree without {s, t} must still have a path between s and t. 
 
Since s ∈ S and t ∈ T, there must be at least one edge {x, y} on this path with x ∈ S and y ∈ T. 
 
By removing {x, y} and including {s, t}, a spanning tree whose total weight is no larger is 
obtained.  ••• 
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 2 
The proof suggests a slow approach - remove a maximum weight edge from every cycle: 
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Prim’s algorithm applies the observation by having S as vertices connected together by a subtree of the 
eventual MST and T contains vertices that have not yet been connected.  The algorithm avoids including 
the maximum weight edges for all cycles. 
 
PRIM’S ALGORITHM – Three versions 
 
1. “Memoryless” – Only saves partial MST and current partition. (primMemoryless.c) 
 
Place any vertex x ∈ V in S. 
T = V – {x} 
while T ≠ ∅ 
 Find the minimum weight edge {s, t} over all t ∈ T and all s ∈ S.  (Scan adj. list for each t) 

Include {s, t} in MST. 
 T = T – {t} 
 S = S ∪ {t} 
 
Since no substantial data structures are used, this takes 

! 

" EV( )  time. 
 
Which edge does Prim’s algorithm select next? 
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2.  Maintains T-table that provides the closest vertex in S for each vertex in T.  (primTable.c) 
 
Eliminates scanning all T adjacency lists in every phase, but still scans the list of the last vertex moved 
from T to S. 
 
Place any vertex x ∈ V in S. 
T = V – {x} 
for each t ∈ T 
 Initialize T-table entry with weight of {t, x} (or ∞ if non-existent) and x as best-S-neighbor 
while T ≠ ∅ 
 Scan T-table entries for the minimum weight edge {t, best-S-neighbor[t]} 

over all t ∈ T and all s ∈ S. 
Include edge {t, best-S-neighbor[t]} in MST. 

 T = T – {t} 
 S = S ∪ {t} 
 for each vertex x in adjacency list of t 
  if x ∈ T and weight of {x, t} is smaller than T-weight[x] 
   T-weight[x] = weight of {x, t} 
   best-S-neighbor[x] = t 
 
What are the T-table contents before and after the next MST vertex is selected? 
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Analysis: 
 

Initializing the T-table takes Θ(V). 
 
Scans of T-table entries contribute Θ(V2). 
 
Traversals of adjacency lists contribute Θ(E). 
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3. Replace T-table by a heap.  (primHeap.cpp, minHeap.cpp) 
 
The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move 
from T to S improves. 
 
Place any vertex x ∈ V in S. 
T = V – {x} 
for each t ∈ T 
 Load T-heap entry with weight (as the priority) of {t, x} (or ∞ if non-existent) and x as  

best-S-neighbor 
BUILD-MIN-HEAP(T-heap) 
while T ≠ ∅ 
 Use HEAP-EXTRACT-MIN to obtain T-heap entry with the minimum weight edge over all t ∈ T 

and all s ∈ S. 
Include edge {t, best-S-neighbor[t]} in MST. 

 T = T – {t} 
 S = S ∪ {t} 
 for each vertex x in adjacency list of t 
  if x ∈ T and weight of {x, t} is smaller than T-weight[x] 
   T-weight[x] = weight of {x, t} 
   best-S-neighbor[x] = t 
   MIN-HEAP-DECREASE-KEY(T-heap) 
 
Analysis: 
 
 Initializing the T-heap takes Θ(V). 
 

Total cost for HEAP-EXTRACT-MINs is Θ(V log V). 
 
Traversals of adjacency lists and MIN-HEAP-DECREASE-KEYs contribute Θ(E log V). 
 

! 

" E logV( )overall worst-case, since E > V. 
 
Which version is the fastest? 
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True or False (Prove or give counterexample): 
 

Suppose an MST has been found for a graph. 
 
Claim:  For any pair of vertices, there is a shortest path that uses only MST edges. 

 
 True or False: 
 

If no two edges in an undirected graph have the same weight, then the MST is unique. 
 
 


