
CSE 2320 Notes 13: Minimum Spanning Trees

(Last updated 11/1/06 7:50 PM)

CLRS, 23.1, 23.2 - omit Kruskal's algorithm

CONCEPTS

Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the
vertices. (AKA bottleneck shortest path tree)

Observation: Suppose S and T partition V such that

1. S ∩ T = ∅

2. S ∪ T = V

3. |S| > 0 and |T| > 0

then there is some MST that includes a minimum weight edge {s, t} with s ∈ S and t ∈ T.

Proof:

Suppose there is a partition with a minimum weight edge {s, t}.

A spanning tree without {s, t} must still have a path between s and t.

Since s ∈ S and t ∈ T, there must be at least one edge {x, y} on this path with x ∈ S and y ∈ T.

By removing {x, y} and including {s, t}, a spanning tree whose total weight is no larger is
obtained. •••

s t

S

T

x

y

 2
The proof suggests a slow approach - remove a maximum weight edge from every cycle:

A

B

C

D

E

F

1

2

5

8

6

7

4

Prim’s algorithm applies the observation by having S as vertices connected together by a subtree of the
eventual MST and T contains vertices that have not yet been connected. The algorithm avoids including
the maximum weight edges for all cycles.

PRIM’S ALGORITHM – Three versions

1. “Memoryless” – Only saves partial MST and current partition. (primMemoryless.c)

Place any vertex x ∈ V in S.
T = V – {x}
while T ≠ ∅
 Find the minimum weight edge {s, t} over all t ∈ T and all s ∈ S. (Scan adj. list for each t)

Include {s, t} in MST.
 T = T – {t}
 S = S ∪ {t}

Since no substantial data structures are used, this takes

!

" EV() time.

Which edge does Prim’s algorithm select next?

0

1

2

3

4

5

6

10

9

7

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22

3

 3
2. Maintains T-table that provides the closest vertex in S for each vertex in T. (primTable.c)

Eliminates scanning all T adjacency lists in every phase, but still scans the list of the last vertex moved
from T to S.

Place any vertex x ∈ V in S.
T = V – {x}
for each t ∈ T
 Initialize T-table entry with weight of {t, x} (or ∞ if non-existent) and x as best-S-neighbor
while T ≠ ∅
 Scan T-table entries for the minimum weight edge {t, best-S-neighbor[t]}

over all t ∈ T and all s ∈ S.
Include edge {t, best-S-neighbor[t]} in MST.

 T = T – {t}
 S = S ∪ {t}
 for each vertex x in adjacency list of t
 if x ∈ T and weight of {x, t} is smaller than T-weight[x]
 T-weight[x] = weight of {x, t}
 best-S-neighbor[x] = t

What are the T-table contents before and after the next MST vertex is selected?

0

1

2

3

4

5

6

10

9

7

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22

3

Analysis:

Initializing the T-table takes Θ(V).

Scans of T-table entries contribute Θ(V2).

Traversals of adjacency lists contribute Θ(E).

!

" V
2

+ E

$
% &

'
(overall worst-case.

 4

3. Replace T-table by a heap. (primHeap.cpp, minHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move
from T to S improves.

Place any vertex x ∈ V in S.
T = V – {x}
for each t ∈ T
 Load T-heap entry with weight (as the priority) of {t, x} (or ∞ if non-existent) and x as

best-S-neighbor
BUILD-MIN-HEAP(T-heap)
while T ≠ ∅
 Use HEAP-EXTRACT-MIN to obtain T-heap entry with the minimum weight edge over all t ∈ T

and all s ∈ S.
Include edge {t, best-S-neighbor[t]} in MST.

 T = T – {t}
 S = S ∪ {t}
 for each vertex x in adjacency list of t
 if x ∈ T and weight of {x, t} is smaller than T-weight[x]
 T-weight[x] = weight of {x, t}
 best-S-neighbor[x] = t
 MIN-HEAP-DECREASE-KEY(T-heap)

Analysis:

 Initializing the T-heap takes Θ(V).

Total cost for HEAP-EXTRACT-MINs is Θ(V log V).

Traversals of adjacency lists and MIN-HEAP-DECREASE-KEYs contribute Θ(E log V).

!

" E logV()overall worst-case, since E > V.

Which version is the fastest?

 Sparse

!

E =" V()() Dense

!

E =" V
2#

$
% &

'
(

$
%

&

'
(

 1.

!

" EV()

!

" V
2#

$
% &

'
(

!

" V
3#

$
% &

'
(

 2.

!

" V
2

+ E

$
% &

'
(

!

" V
2#

$
% &

'
(

!

" V
2#

$
% &

'
(

 3.

!

" E logV()

!

" V logV()

!

" V
2 logV

$
% &

'
(

 5
True or False (Prove or give counterexample):

Suppose an MST has been found for a graph.

Claim: For any pair of vertices, there is a shortest path that uses only MST edges.

 True or False:

If no two edges in an undirected graph have the same weight, then the MST is unique.

