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CSE 2320 Notes 14:  Shortest Paths

(Last updated 11/6/06 5:48 PM)
CLRS, 24.3, 25.2

Concepts

Input:


Directed graph with non-negative edge weights (stored as adj. matrix for Floyd-Warshall)


Dijkstra – source vertex

Output:


Dijkstra – tree that gives a shortest path from source to each vertex


Floyd-Warshall – shortest path between each pair of vertices (“all-pairs”) as matrix

Dijkstra’s Algorithm – three versions

Similar to Prim’s MST:


S = vertices whose shortest path is known (initially just the source)



Length of path



Predecessor (vertex) on path (AKA shortest path tree)


T = vertices whose shortest path is not known

Each phase moves a T vertex to S by virtue of that vertex having the shortest path among all T vertices.

Third version may be viewed as being BFS with the FIFO queue replaced by a priority queue.

1.
“Memoryless” – Only saves shortest path tree and current partition.  (dijkstraMemoryless.c)

Place desired source vertex x ( V in S

T = V – {x}

x.distance = 0

x.pred = (-1)

while T ( (

Find the edge (s, t) over all t ( T and all s ( S with minimum value for s.distance + weight(s, t)  

(i.e. scan adj. list for each s)

t.distance = s.distance + weight(s, t)

t.pred = s


T = T – {t}


S = S ( {t}

Since no substantial data structures are used, this takes 
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2.
Maintains T-table that provides the predecessor vertex in S for each vertex t ( T to give the shortest possible path through S to t.  (dijkstraTable.c)

Eliminates scanning all S adjacency lists in every phase, but still scans the list of the last vertex moved from T to S.

Place desired source vertex x ( V in S

T = V – {x}

x.distance = 0

x.pred = (-1)

for each t ( T


Initialize t.distance with weight of (x, t) (or ( if non-existent) and t.pred = x

while T ( (
Scan T entries to find vertex t with minimum value for t.distance


T = T – {t}


S = S ( {t}


for each vertex x in adjacency list of t (i.e. (t, x))



if x ( T and t.distance + weight(t, x) < x.distance




x.distance = t.distance + weight(t, x)




x.pred = t

Analysis:

Initializing the T-table takes ((V).

Scans of T-table entries contribute ((V2).

Traversals of adjacency lists contribute ((E).


[image: image3.wmf] overall worst-case.

3.
Replace T-table by a heap.  (dijkstraHeap.cpp, minHeap.cpp)

The time for updating distances and predecessors increases, but the time for selection of the next vertex to move from T to S improves.

Place desired source vertex x ( V in S

T = V – {x}

x.distance = 0

x.pred = (-1)

for each t ( T

Initialize T-heap with weight (as the priority) of (x, t) (or ( if non-existent) and t.pred = x

Build-Min-Heap(T-heap)

while T ( (
Use Heap-Extract-Min to obtain T-heap entry with minimum t.distance


T = T – {t}


S = S ( {t}


for each vertex x in adjacency list of t (i.e. (t, x))



if x ( T and t.distance + weight(t, x) < x.distance




x.distance = t.distance + weight(t, x)




x.pred = t




Min-Heap-Decrease-Key(T-heap)

Analysis:


Initializing the T-heap takes ((V).

Total cost for Heap-Extract-Mins is ((V log V).

Traversals of adjacency lists and Min-Heap-Decrease-Keys contribute ((E log V).
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Which version is the fastest?



Sparse 
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Dense 
[image: image6.wmf]

1.
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2.
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3.
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Floyd-Warshall Algorithm

Based on adjacency matrices.  Will examine three versions:

Warshall’s Algorithm – After (V3) preprocessing, processes each path existence query in (1) time.

Warshall’s Algorithm with Successors - After (V3) preprocessing, provides a path in response to a path existence query in (V) time.

Floyd-Warshall Algorithm (with Successors) - After (V3) preprocessing, provides each shortest path in (V) time.

Warshall’s Algorithm:


for (j=0; j<V; j++)



for (i=0; i<V; i++)




if (A[i][j])





for (k=0; k<V; k++)






if (A[j][k])







A[i][k]=1;
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If zero-edge paths are useful for an application (i.e. reflexive, self-loops), the diagonal may be all ones.

Why does it work?


a.  Correct in use of transitivity.


b.  Is it complete?


When
Paths That Can Be Detected


Before j=0
x ( y


After j=0
x ( 0 ( y


After j=1
x ( 1 ( y



x ( 0 ( 1 ( y



x ( 1 ( 0 ( y


After j=2
x ( 2 ( y



x ( 0 ( 2 ( y



x ( 1 ( 2 ( y



x ( 2 ( 0 ( y



x ( 2 ( 1 ( y



x ( 0 ( 1 ( 2 ( y



x ( 0 ( 2 ( 1 ( y



x ( 1 ( 0 ( 2 ( y



x ( 1 ( 2 ( 0 ( y



x ( 2 ( 0 ( 1 ( y



x ( 2 ( 1 ( 0 ( y


.


.


.


After j=p
x ( Permutation of subset of 0 … p ( y


After j=V-1
ALL PATHS



Math. Induction:
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Warshall’s Algorithm with Successors

Successor Matrix (CLRS uses predecessor)


7-11 directions:
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Initialize:
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Warshall Matrix Update:
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succ[i][j] = A          succ[j][k] = B           succ[i][k] = ?
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for (j=0; j<V; j++)



for (i=0; i<V; i++)




if (s[i][j] != (-1))





for (k=0; k<V; k++)






if (succ[i][k]==(-1) && succ[j][k]!=(-1))







succ[i][k] = succ[i][j];

Complete Example (warshall.c) saving paths using successors:

 -1  -1  -1   3  -1 

 -1  -1  -1   3   4 

 -1   1  -1  -1  -1 

 -1  -1   2  -1  -1 

 -1  -1  -1  -1  -1 

-------------------

 -1  -1  -1   3  -1 

 -1  -1  -1   3   4 

 -1   1  -1  -1  -1 

 -1  -1   2  -1  -1 

 -1  -1  -1  -1  -1 

-------------------

 -1  -1  -1   3  -1 

 -1  -1  -1   3   4 

 -1   1  -1   1   1 

 -1  -1   2  -1  -1 

 -1  -1  -1  -1  -1 

-------------------

 -1  -1  -1   3  -1 

 -1  -1  -1   3   4 

 -1   1  -1   1   1 

 -1   2   2   2   2 

 -1  -1  -1  -1  -1 

-------------------

 -1   3   3   3   3 

 -1   3   3   3   4 

 -1   1   1   1   1 

 -1   2   2   2   2 

 -1  -1  -1  -1  -1 

-------------------

 -1   3   3   3   3 

 -1   3   3   3   4 

 -1   1   1   1   1 

 -1   2   2   2   2 

 -1  -1  -1  -1  -1 

-------------------
Other ways to save path information:

Predecessors (warshallPred.c)


Transitive/Intermediate/Column (warshallCol.c)
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Floyd-Warshall Algorithm (with Successors)

After j = p has been processed, the shortest path from each x to each y that uses only vertices in 0 . . . p as intermediate vertices is recorded in matrix.


for (j=0; j<V; j++)



for (i=0; i<V; i++)




if (dist[i][j] < 999)





for (k=0; k<V; k++)





{






newDist = dist[i][j] + dist[j][k];






if (newDist < dist[i][k])






{







dist[i][k] = newDist;







succ[i][k] = succ[i][j];






}





}

[image: image25.wmf]
999 0   1 1   1 2 999 3   5 4 

999 0 999 1   5 2   1 3 999 4 

999 0 999 1 999 2 999 3   1 4 

  1 0 999 1 999 2 999 3  10 4 

999 0 999 1 999 2 999 3 999 4 

-----------------------------

999 0   1 1   1 2 999 3   5 4 

999 0 999 1   5 2   1 3 999 4 

999 0 999 1 999 2 999 3   1 4 

  1 0   2 0   2 0 999 3   6 0 

999 0 999 1 999 2 999 3 999 4 

-----------------------------

999 0   1 1   1 2   2 1   5 4 

999 0 999 1   5 2   1 3 999 4 

999 0 999 1 999 2 999 3   1 4 

  1 0   2 0   2 0   3 0   6 0 

999 0 999 1 999 2 999 3 999 4 

-----------------------------

999 0   1 1   1 2   2 1   2 2 

999 0 999 1   5 2   1 3   6 2 

999 0 999 1 999 2 999 3   1 4 

  1 0   2 0   2 0   3 0   3 0 

999 0 999 1 999 2 999 3 999 4 

-----------------------------

  3 1   1 1   1 2   2 1   2 2 

  2 3   3 3   3 3   1 3   4 3 

999 0 999 1 999 2 999 3   1 4 

  1 0   2 0   2 0   3 0   3 0 

999 0 999 1 999 2 999 3 999 4 

-----------------------------

  3 1   1 1   1 2   2 1   2 2 

  2 3   3 3   3 3   1 3   4 3 

999 0 999 1 999 2 999 3   1 4 

  1 0   2 0   2 0   3 0   3 0 

999 0 999 1 999 2 999 3 999 4 

-----------------------------

Note:  In this example, zero-edge paths are not considered.
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