PAGE
3

CSE 2320 Notes 14: Shortest Paths

(Last updated 11/6/06 5:48 PM)
CLRS, 24.3, 25.2

Concepts

Input:

Directed graph with non-negative edge weights (stored as adj. matrix for Floyd-Warshall)

Dijkstra – source vertex

Output:

Dijkstra – tree that gives a shortest path from source to each vertex

Floyd-Warshall – shortest path between each pair of vertices (“all-pairs”) as matrix

Dijkstra’s Algorithm – three versions

Similar to Prim’s MST:

S = vertices whose shortest path is known (initially just the source)

Length of path

Predecessor (vertex) on path (AKA shortest path tree)

T = vertices whose shortest path is not known

Each phase moves a T vertex to S by virtue of that vertex having the shortest path among all T vertices.

Third version may be viewed as being BFS with the FIFO queue replaced by a priority queue.

1.
“Memoryless” – Only saves shortest path tree and current partition. (dijkstraMemoryless.c)

Place desired source vertex x (V in S

T = V – {x}

x.distance = 0

x.pred = (-1)

while T ((

Find the edge (s, t) over all t (T and all s (S with minimum value for s.distance + weight(s, t)

(i.e. scan adj. list for each s)

t.distance = s.distance + weight(s, t)

t.pred = s

T = T – {t}

S = S ({t}

Since no substantial data structures are used, this takes
[image: image1.wmf] time.

[image: image2.wmf]

0
1
2
3
4
5
6
7

0(-)
(
(
(
(
(
(
(

*
10(0)
20(0)
15(0)

*

11(1)
20(1)

13(4)

*
18(4)

*
14(2)

16(2)
20(2)

*

15(3)

18(7)
*

*

*

2.
Maintains T-table that provides the predecessor vertex in S for each vertex t (T to give the shortest possible path through S to t. (dijkstraTable.c)

Eliminates scanning all S adjacency lists in every phase, but still scans the list of the last vertex moved from T to S.

Place desired source vertex x (V in S

T = V – {x}

x.distance = 0

x.pred = (-1)

for each t (T

Initialize t.distance with weight of (x, t) (or (if non-existent) and t.pred = x

while T ((
Scan T entries to find vertex t with minimum value for t.distance

T = T – {t}

S = S ({t}

for each vertex x in adjacency list of t (i.e. (t, x))

if x (T and t.distance + weight(t, x) < x.distance

x.distance = t.distance + weight(t, x)

x.pred = t

Analysis:

Initializing the T-table takes ((V).

Scans of T-table entries contribute ((V2).

Traversals of adjacency lists contribute ((E).

[image: image3.wmf] overall worst-case.

3.
Replace T-table by a heap. (dijkstraHeap.cpp, minHeap.cpp)

The time for updating distances and predecessors increases, but the time for selection of the next vertex to move from T to S improves.

Place desired source vertex x (V in S

T = V – {x}

x.distance = 0

x.pred = (-1)

for each t (T

Initialize T-heap with weight (as the priority) of (x, t) (or (if non-existent) and t.pred = x

Build-Min-Heap(T-heap)

while T ((
Use Heap-Extract-Min to obtain T-heap entry with minimum t.distance

T = T – {t}

S = S ({t}

for each vertex x in adjacency list of t (i.e. (t, x))

if x (T and t.distance + weight(t, x) < x.distance

x.distance = t.distance + weight(t, x)

x.pred = t

Min-Heap-Decrease-Key(T-heap)

Analysis:

Initializing the T-heap takes ((V).

Total cost for Heap-Extract-Mins is ((V log V).

Traversals of adjacency lists and Min-Heap-Decrease-Keys contribute ((E log V).

[image: image4.wmf] overall worst-case, since E > V.

Which version is the fastest?

Sparse
[image: image5.wmf]
Dense
[image: image6.wmf]

1.

[image: image7.wmf]

[image: image8.wmf]

[image: image9.wmf]

2.

[image: image10.wmf]

[image: image11.wmf]

[image: image12.wmf]

3.

[image: image13.wmf]

[image: image14.wmf]

[image: image15.wmf]
Floyd-Warshall Algorithm

Based on adjacency matrices. Will examine three versions:

Warshall’s Algorithm – After (V3) preprocessing, processes each path existence query in (1) time.

Warshall’s Algorithm with Successors - After (V3) preprocessing, provides a path in response to a path existence query in (V) time.

Floyd-Warshall Algorithm (with Successors) - After (V3) preprocessing, provides each shortest path in (V) time.

Warshall’s Algorithm:

for (j=0; j<V; j++)

for (i=0; i<V; i++)

if (A[i][j])

for (k=0; k<V; k++)

if (A[j][k])

A[i][k]=1;

[image: image16.wmf]
[image: image17.wmf]
If zero-edge paths are useful for an application (i.e. reflexive, self-loops), the diagonal may be all ones.

Why does it work?

a. Correct in use of transitivity.

b. Is it complete?

When
Paths That Can Be Detected

Before j=0
x (y

After j=0
x (0 (y

After j=1
x (1 (y

x (0 (1 (y

x (1 (0 (y

After j=2
x (2 (y

x (0 (2 (y

x (1 (2 (y

x (2 (0 (y

x (2 (1 (y

x (0 (1 (2 (y

x (0 (2 (1 (y

x (1 (0 (2 (y

x (1 (2 (0 (y

x (2 (0 (1 (y

x (2 (1 (0 (y

.

.

.

After j=p
x (Permutation of subset of 0 … p (y

After j=V-1
ALL PATHS

Math. Induction:

[image: image18.wmf]
Warshall’s Algorithm with Successors

Successor Matrix (CLRS uses predecessor)

7-11 directions:

[image: image19.wmf]

Initialize:

[image: image20.wmf]

Warshall Matrix Update:

[image: image21.wmf]

succ[i][j] = A succ[j][k] = B succ[i][k] = ?

[image: image22.wmf]

for (j=0; j<V; j++)

for (i=0; i<V; i++)

if (s[i][j] != (-1))

for (k=0; k<V; k++)

if (succ[i][k]==(-1) && succ[j][k]!=(-1))

succ[i][k] = succ[i][j];

Complete Example (warshall.c) saving paths using successors:

 -1 -1 -1 3 -1

 -1 -1 -1 3 4

 -1 1 -1 -1 -1

 -1 -1 2 -1 -1

 -1 -1 -1 -1 -1

 -1 -1 -1 3 -1

 -1 -1 -1 3 4

 -1 1 -1 -1 -1

 -1 -1 2 -1 -1

 -1 -1 -1 -1 -1

 -1 -1 -1 3 -1

 -1 -1 -1 3 4

 -1 1 -1 1 1

 -1 -1 2 -1 -1

 -1 -1 -1 -1 -1

 -1 -1 -1 3 -1

 -1 -1 -1 3 4

 -1 1 -1 1 1

 -1 2 2 2 2

 -1 -1 -1 -1 -1

 -1 3 3 3 3

 -1 3 3 3 4

 -1 1 1 1 1

 -1 2 2 2 2

 -1 -1 -1 -1 -1

 -1 3 3 3 3

 -1 3 3 3 4

 -1 1 1 1 1

 -1 2 2 2 2

 -1 -1 -1 -1 -1

Other ways to save path information:

Predecessors (warshallPred.c)

Transitive/Intermediate/Column (warshallCol.c)

[image: image23.wmf]
[image: image24.wmf]

Floyd-Warshall Algorithm (with Successors)

After j = p has been processed, the shortest path from each x to each y that uses only vertices in 0 . . . p as intermediate vertices is recorded in matrix.

for (j=0; j<V; j++)

for (i=0; i<V; i++)

if (dist[i][j] < 999)

for (k=0; k<V; k++)

{

newDist = dist[i][j] + dist[j][k];

if (newDist < dist[i][k])

{

dist[i][k] = newDist;

succ[i][k] = succ[i][j];

}

}

[image: image25.wmf]
999 0 1 1 1 2 999 3 5 4

999 0 999 1 5 2 1 3 999 4

999 0 999 1 999 2 999 3 1 4

 1 0 999 1 999 2 999 3 10 4

999 0 999 1 999 2 999 3 999 4

999 0 1 1 1 2 999 3 5 4

999 0 999 1 5 2 1 3 999 4

999 0 999 1 999 2 999 3 1 4

 1 0 2 0 2 0 999 3 6 0

999 0 999 1 999 2 999 3 999 4

999 0 1 1 1 2 2 1 5 4

999 0 999 1 5 2 1 3 999 4

999 0 999 1 999 2 999 3 1 4

 1 0 2 0 2 0 3 0 6 0

999 0 999 1 999 2 999 3 999 4

999 0 1 1 1 2 2 1 2 2

999 0 999 1 5 2 1 3 6 2

999 0 999 1 999 2 999 3 1 4

 1 0 2 0 2 0 3 0 3 0

999 0 999 1 999 2 999 3 999 4

 3 1 1 1 1 2 2 1 2 2

 2 3 3 3 3 3 1 3 4 3

999 0 999 1 999 2 999 3 1 4

 1 0 2 0 2 0 3 0 3 0

999 0 999 1 999 2 999 3 999 4

 3 1 1 1 1 2 2 1 2 2

 2 3 3 3 3 3 1 3 4 3

999 0 999 1 999 2 999 3 1 4

 1 0 2 0 2 0 3 0 3 0

999 0 999 1 999 2 999 3 999 4

Note: In this example, zero-edge paths are not considered.

_1063644099.unknown

_1063644269.unknown

_1063644334.unknown

_1064159996.unknown

_1063644303.unknown

_1063644239.unknown

_1063644263.unknown

_1063644138.unknown

_1063207235.unknown

_1063644042.unknown

_1063644073.unknown

_1063644037.unknown

_1063207209.unknown

