CSE 2320 Notes 14: Shortest Paths

(Last updated 11/6/06 5:48 PM)
CLRS, 24.3, 25.2
CONCEPTS
Input:
Directed graph with non-negative edge weights (stored as adj. matrix for Floyd-Warshall) Dijkstra - source vertex

Output:
Dijkstra - tree that gives a shortest path from source to each vertex
Floyd-Warshall - shortest path between each pair of vertices ("all-pairs") as matrix
Dijkstra's Algorithm - three versions
Similar to Prim's MST:
$S=$ vertices whose shortest path is known (initially just the source)
Length of path
Predecessor (vertex) on path (AKA shortest path tree)
$\mathrm{T}=$ vertices whose shortest path is not known
Each phase moves a T vertex to S by virtue of that vertex having the shortest path among all T vertices.
Third version may be viewed as being BFS with the FIFO queue replaced by a priority queue.

1. "Memoryless" - Only saves shortest path tree and current partition. (dijkstraMemoryless.c)

Place desired source vertex $x \in V$ in S
$\mathrm{T}=\mathrm{V}-\{\mathrm{x}\}$
x.distance $=0$
x. pred $=(-1)$
while $\mathrm{T} \neq \varnothing$
Find the edge (s, t) over all $t \in T$ and all $s \in S$ with minimum value for s.distance + weight (s, t)
(i.e. scan adj. list for each s)
t.distance $=$ s.distance + weight (s, t)
t.pred $=\mathrm{s}$
$\mathrm{T}=\mathrm{T}-\{\mathrm{t}\}$
$\mathrm{S}=\mathrm{S} \cup\{\mathrm{t}\}$
Since no substantial data structures are used, this takes $\Theta(E V)$ time.

0	1	2	3	4	5	6	7
$0(-)$	∞						
$*$	$10(0)$	$20(0)$	$15(0)$				
	$*$			$11(1)$	$20(1)$		
		$13(4)$		$*$	$18(4)$		
		$*$	$14(2)$		$16(2)$	$20(2)$	
			$*$			$18(7)$	$*$
					$*$		
						$*$	

2. Maintains T-table that provides the predecessor vertex in S for each vertex $t \in T$ to give the shortest possible path through S to t. (dijkstraTable.c)

Eliminates scanning all S adjacency lists in every phase, but still scans the list of the last vertex moved from T to S .

Place desired source vertex $x \in V$ in S
$\mathrm{T}=\mathrm{V}-\{\mathrm{x}\}$
x.distance $=0$
x . pred $=(-1)$
for each $t \in T$
Initialize t.distance with weight of $(x, t)(o r \infty$ if non-existent) and $t . p r e d=x$
while $\mathrm{T} \neq \varnothing$
Scan T entries to find vertex t with minimum value for t.distance
$\mathrm{T}=\mathrm{T}-\{\mathrm{t}\}$
$\mathrm{S}=\mathrm{S} \cup\{\mathrm{t}\}$
for each vertex x in adjacency list of t (i.e. (t, x))
if $x \in T$ and .distance + weight $(t, x)<x$.distance
x . distance $=\mathrm{t}$.distance + weight (t, x)
x.pred $=\mathrm{t}$

Analysis:
Initializing the T-table takes $\Theta(\mathrm{V})$.
Scans of T-table entries contribute $\Theta\left(\mathrm{V}^{2}\right)$.
Traversals of adjacency lists contribute $\Theta(\mathrm{E})$. $\Theta\left(V^{2}+E\right)$ overall worst-case.
3. Replace T-table by a heap. (dijkstraHeap.cpp, minHeap.cpp)

The time for updating distances and predecessors increases, but the time for selection of the next vertex to move from T to S improves.

Place desired source vertex $x \in V$ in S
$\mathrm{T}=\mathrm{V}-\{\mathrm{x}\}$
x.distance $=0$
x. pred $=(-1)$
for each $t \in T$
Initialize T-heap with weight (as the priority) of (x, t) ($\mathrm{or} \infty$ if non-existent) and t .pred $=\mathrm{x}$
Build-Min-Heap(T-heap)
while $\mathrm{T} \neq \varnothing$
Use Heap-Extract-Min to obtain T-heap entry with minimum t.distance
$\mathrm{T}=\mathrm{T}-\{\mathrm{t}\}$
$\mathrm{S}=\mathrm{S} \cup\{\mathrm{t}\}$
for each vertex x in adjacency list of t (i.e. (t, x))
if $x \in T$ and .distance + weight $(t, x)<x$.distance
x . distance $=\mathrm{t}$.distance + weight (t, x)
x. pred $=\mathrm{t}$

Min-Heap-Decrease-Key(T-heap)
Analysis:
Initializing the T-heap takes $\Theta(\mathrm{V})$.
Total cost for Heap-Extract-Mins is $\Theta(\mathrm{V} \log \mathrm{V})$.
Traversals of adjacency lists and Min-Heap-Decrease-Keys contribute Θ (E log V). $\Theta(E \log V)$ overall worst-case, since $\mathrm{E}>\mathrm{V}$.

Which version is the fastest?

$$
\text { Sparse }(E=\mathrm{O}(V)) \quad \text { Dense }\left(E=\Omega\left(V^{2}\right)\right)
$$

1. $\Theta(E V)$
$\Theta\left(V^{2}\right)$
$\Theta\left(V^{3}\right)$
2. $\Theta\left(V^{2}+E\right)$
$\Theta\left(V^{2}\right)$
$\Theta\left(V^{2}\right)$
3.

$$
\Theta(E \log V)
$$

$$
\Theta(V \log V)
$$

$$
\Theta\left(V^{2} \log V\right)
$$

Based on adjacency matrices. Will examine three versions:
Warshall's Algorithm - After $\Theta\left(V^{3}\right)$ preprocessing, processes each path existence query in $\Theta(1)$ time.
Warshall's Algorithm with Successors - After $\Theta\left(\mathrm{V}^{3}\right)$ preprocessing, provides a path in response to a path existence query in $\mathrm{O}(\mathrm{V})$ time.

Floyd-Warshall Algorithm (with Successors) - After $\Theta\left(V^{3}\right)$ preprocessing, provides each shortest path in $\mathrm{O}(\mathrm{V})$ time.

Warshall's Algorithm:

$$
\begin{aligned}
& \text { for (} \mathrm{j}=0 \text {; } \mathrm{j}<\mathrm{V} \text {; } \mathrm{j}++ \text {) } \\
& \text { for (} i=0 \text {; } i<V \text {; } i++ \text {) } \\
& \text { if (A[i][j]) } \\
& \text { for (} k=0 \text {; } k<V \text {; } k++ \text {) } \\
& \text { if (A[j][k]) } \\
& \text { A[i][k]=1; }
\end{aligned}
$$

If zero-edge paths are useful for an application (i.e. reflexive, self-loops), the diagonal may be all ones.

Why does it work?
a. Correct in use of transitivity.
b. Is it complete?

When
Before $\mathrm{j}=0$
After $\mathrm{j}=0$

> Paths That Can Be Detected

$$
\mathrm{x} \rightarrow 0 \rightarrow \mathrm{y}
$$

After $\mathrm{j}=1$

$$
x \rightarrow y
$$

$$
\begin{gathered}
\mathrm{x} \rightarrow 1 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 0 \rightarrow 1 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 1 \rightarrow 0 \rightarrow \mathrm{y}
\end{gathered}
$$

After $\mathrm{j}=2$

$$
\begin{gathered}
\mathrm{x} \rightarrow 2 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 0 \rightarrow 2 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 1 \rightarrow 2 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 2 \rightarrow 0 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 2 \rightarrow 1 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 0 \rightarrow 2 \rightarrow 1 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 1 \rightarrow 0 \rightarrow 2 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 1 \rightarrow 2 \rightarrow 0 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 2 \rightarrow 0 \rightarrow 1 \rightarrow \mathrm{y} \\
\mathrm{x} \rightarrow 2 \rightarrow 1 \rightarrow 0 \rightarrow \mathrm{y}
\end{gathered}
$$

After $\mathrm{j}=\mathrm{V}-1$
After $j=p \quad x \rightarrow$ Permutation of subset of $0 \ldots p \rightarrow y$
ALL PATHS
Math. Induction:

Warshall's Algorithm with Successors
Successor Matrix (CLRS uses predecessor)
7-11 directions:

Initialize:

Warshall Matrix Update:

$\operatorname{succ}[\mathrm{i}][\mathrm{j}]=\mathrm{A} \quad \operatorname{succ}[\mathrm{j}][\mathrm{k}]=\mathrm{B} \quad \operatorname{succ}[\mathrm{i}][\mathrm{k}]=$?


```
for ( \(\mathrm{j}=0\); \(\mathrm{j}<\mathrm{V} ; \mathrm{j}++\) )
    for (i=0; \(i<V\); \(i++\) )
    if (s[i][j] ! \(=(-1)\) )
        for ( \(k=0\); \(k<V\); \(k++\) )
    if (succ[i][k]==(-1) \&\& succ[j][k]!=(-1))
    succ[i][k] = succ[i][j];
```

Complete Example (warshall.c) saving paths using successors:

-1	-1	-1	3	-1
-1	-1	-1	3	4
-1	1	-1	-1	-1
-1	-1	2	-1	-1
-1	-1	-1	-1	-1
-1	-1	-1	3	-1
-1	-1	-1	3	4
-1	1	-1	-1	-1
-1	-1	2	-1	-1
-1	-1	-1	-1	-1
-1	-1	-1	3	-1
-1	-1	-1	3	4
-1	1	-1	1	1
-1	-1	2	-1	-1
-1	-1	-1	-1	-1

Other ways to save path information:
Predecessors (warshallpred.c)

Transitive/Intermediate/Column (warshallCol.c)

Floyd-Warshall Algorithm (with Successors)
After $\mathrm{j}=\mathrm{p}$ has been processed, the shortest path from each x to each y that uses only vertices in $0 \ldots \mathrm{p}$ as intermediate vertices is recorded in matrix.

```
for (j=0; j<V; j++)
    for (i=0; i<V; i++)
                if (dist[i][j] < 999)
            for (k=0; k<V; k++)
            {
                newDist = dist[i][j] + dist[j][k];
                if (newDist < dist[i][k])
                {
                        dist[i][k] = newDist;
                        succ[i][k] = succ[i][j];
                                }
    }
```



```
\begin{tabular}{lccccc} 
& 0 & 1 & 2 & 3 & 4 \\
0 & & 1 & 1 & & 5 \\
1 & & & 5 & 1 & \\
2 & & & & & 1 \\
3 & 1 & & & & 10 \\
4 & & & & &
\end{tabular}
```

999	0	1	1	1	2	999	3	5	4	999	0	1	1	1	2	2	1	2	
999	0	999	1	5	2	1	3	999	4	999	0	999	1	5	2	1	3	6	2
999	0	999	1	999	2	999	3	1	4	999	0	999	1	999	2	999	3	1	4
1	0	999	1	999	2	999	3	10	4	1	0	2	0	2	0	3	0	3	0
999	0	999	1	999	2	999	3	999	4	999	0	999	1	999	2	999	3	999	4
999	0	1	1	1	2	999	3	5	4	3	1	1	1	1	2	2	1	2	2
999	0	999	1	5	2	1	3	999	4	2	3	3	3	3	3	1	3	4	3
999	0	999	1	999	2	999	3	1	4	999	0	999	1	999	2	999	3	1	4
1	0	2	0	2	0	999	3	6	0	1	0	2	0	2	0	3	0	3	0
999	0	999	1	999	2	999	3	999	4	999	0	999	1	999	2	999	3	999	4
999	0	1	1		2	2	1	5	4	3	1	1	1	1	2	2	1	2	2
999	0	999	1	5	2	1	3	999	4	2	3	3	3	3	3	1	3	4	3
999	0	999	1	999	2	999	3	1	4	999	0	999	1	999	2	999	3	1	4
1	0	2	0	2	0	3	0	6	0	1	0	2	0	2	0	3	0	3	0
999	0	999	1	999	2	999	3	999	4	999	0	999	1	999	2	999	3		4

Note: In this example, zero-edge paths are not considered.

