PAGE  
4

CSE 2320 Notes 17:  Greedy Algorithms

(Last updated 11/24/06 6:21 PM)
CLRS, 16.1-16.3

Concepts

Commitments are based on local decisions:


NO backtracking (as occurred in stack rat-in-a-maze)


NO exhaustive search (as occurred with dynamic programming)

MAIN ISSUE:  NOT efficiency . . . Quality of Solution instead


Special situations - exact solution



Prim’s MST

Dijkstra’s shortest path
MCP for network flow


More frequently - heuristic (approximation)



Basketball tryout with min-heap

Example – activity scheduling (unweighted interval scheduling)

n actitivites


Start time (activity starts exactly at time)


Finish time (activity finishes before this time)

One room

Goal:  Maximize number of activities.  (Unlike Weighted Interval Scheduling in Notes 16)

Greedy Solution:

1.
Sort activities by ascending order of finish time.

2.
Consider each activity according to sorted order:



Include activity in schedule only if it does not overlap with other activities in schedule

Optimal or heuristic?

Optimality Proof:

1.
Suppose there is an alternate schedule with a different first activity:


s? . . . f? < rest of schedule >


But s1 . . . f1 can replace s? . . . f? since f1 ( f?
2.
Same argument applies to replacing other activities in the schedule

Problems that can be solved optimally by a greedy method have a simpler structure than problems that require dynamic programming.

Knapsack Problem

Can carry k pounds (to sell) in your knapsack.

Wish to maximize the amount of revenue.

Greedy approach:  Choose according to descending order of $$$/lb.

Fractional (divisible) version:


$$$/lb for each divisible item.


Example:



k = 10 lbs



Perfume:
$1000/lb, 3 lbs available



Chocolate:
$30/lb, 5 lbs available



Beans:

$2/lb, 5 lbs available



Rice:

$1/lb, 5 lbs available


Optimal or heuristic?
0/1 (indivisible) version:


Example:



k = 10 lbs



Bottle of wine:

5 lbs, $500 ($100/lb)



Rare book:

7 lbs, $900 ($129/lb)



Sword:


4 lbs, $500 ($125/lb)



Greedy says to choose _______________, but optimal is ___________________.

(Aside:  Dynamic programming solves in 
[image: image1.wmf] time when k and all 2n input values are integers.  If all objects have the same $$$/lb ratio, the resulting subset sum problem can still take exponential time.)

Huffman Codes - elementary data compression for a static distribution of symbols in an alphabet.

Prefix Code Tree


[image: image2.wmf]
Concept:  Letters that appear more often (higher probability) should be assigned shorter codes.

Evaluating a particular code tree (even if not optimal)


Symbol
Probability
Bits
Probability*Bits


A
.2
2
.4


B
.05
3
.15


C
.3
4
1.2


D
.15
4
.6


E
.1
2
.2


F
.2
2
.4



===

===



S=1.0

S=2.95= Expected bits per symbol

Algorithm:  Build up subtrees by pairing trees with lowest probabilities (use min-heap).

[image: image3.wmf]

[image: image4.wmf]
[image: image5.wmf]



[image: image6.wmf]
[image: image7.wmf]



[image: image8.wmf]

Symbol
Probability
Bits
Probability*Bits


A
.2
2
.4


B
.05
4
.2


C
.3
2
.6


D
.15
3
.45


E
.1
4
.4


F
.2
2
.4



===

===



S=1.0

S=2.45= Expected bits per symbol

Optimality:  If the two minimum-weight trees are not the ones combined, then the expected bits per symbol will be larger than would be computed by the algorithm.

Time:  If there are n symbols, then there are n - 1 subtree combining steps to perform.  Each step calls Heap-Extract-Min twice and Min-Heap-Insert once.  
[image: image9.wmf] overall.










_1067615585.unknown

_1081084695.unknown

