
CSE 2320 Notes 17: Greedy Algorithms

(Last updated 11/24/06 6:21 PM)

CLRS, 16.1-16.3

CONCEPTS

Commitments are based on local decisions:

 NO backtracking (as occurred in stack rat-in-a-maze)

 NO exhaustive search (as occurred with dynamic programming)

MAIN ISSUE: NOT efficiency . . . Quality of Solution instead

 Special situations - exact solution

 Prim’s MST Dijkstra’s shortest path MCP for network flow

 More frequently - heuristic (approximation)

 Basketball tryout with min-heap

EXAMPLE – activity scheduling (unweighted interval scheduling)

n actitivites

 Start time (activity starts exactly at time)

 Finish time (activity finishes before this time)

One room

Goal: Maximize number of activities. (Unlike Weighted Interval Scheduling in Notes 16)

Greedy Solution:

1. Sort activities by ascending order of finish time.

2. Consider each activity according to sorted order:

 Include activity in schedule only if it does not overlap with other activities in schedule

Optimal or heuristic?

 2
Optimality Proof:

1. Suppose there is an alternate schedule with a different first activity:

 s? . . . f? < rest of schedule >

 But s1 . . . f1 can replace s? . . . f? since f1 ≤ f?

2. Same argument applies to replacing other activities in the schedule

Problems that can be solved optimally by a greedy method have a simpler structure than problems that
require dynamic programming.

KNAPSACK PROBLEM

Can carry k pounds (to sell) in your knapsack.

Wish to maximize the amount of revenue.

Greedy approach: Choose according to descending order of $$$/lb.

Fractional (divisible) version:

 $$$/lb for each divisible item.

 Example:

 k = 10 lbs

 Perfume: $1000/lb, 3 lbs available

 Chocolate: $30/lb, 5 lbs available

 Beans: $2/lb, 5 lbs available

 Rice: $1/lb, 5 lbs available

 Optimal or heuristic?

 3
0/1 (indivisible) version:

 Example:

 k = 10 lbs

 Bottle of wine: 5 lbs, $500 ($100/lb)

 Rare book: 7 lbs, $900 ($129/lb)

 Sword: 4 lbs, $500 ($125/lb)

 Greedy says to choose _______________, but optimal is ___________________.

(Aside: Dynamic programming solves in

!

" kn() time when k and all 2n input values are integers.
If all objects have the same $$$/lb ratio, the resulting subset sum problem can still take
exponential time.)

HUFFMAN CODES - elementary data compression for a static distribution of symbols in an alphabet.

Prefix Code Tree

0 1

0

0

0

0 11

1

1

C D

B

E A F

E C D F A E B
0100000001111001001

Concept: Letters that appear more often (higher probability) should be assigned shorter codes.

Evaluating a particular code tree (even if not optimal)

 Symbol Probability Bits Probability*Bits

 A .2 2 .4
 B .05 3 .15
 C .3 4 1.2
 D .15 4 .6
 E .1 2 .2
 F .2 2 .4
 === ===
 Σ=1.0 Σ=2.95= Expected bits per symbol

 4
Algorithm: Build up subtrees by pairing trees with lowest probabilities (use min-heap).

A B C D E F

.2 .05 .3 .15 .1 .2

 A B C D F

.2

.15

.3 .15 .2

E

0 1

A B C

D

F

.2 .3 .2

E

.3

0

0 1

1

 A B C

D

.4

.3

E

.3

0

0 1

1

F

0 1

A B

D

.4

E

.6

0

0 1

1

F

0 1

C

0 1

A

B

D

E

1.0

0

0 1

1

F

0 1

C

0 1

0 1

 Symbol Probability Bits Probability*Bits

 A .2 2 .4
 B .05 4 .2
 C .3 2 .6
 D .15 3 .45
 E .1 4 .4
 F .2 2 .4
 === ===
 Σ=1.0 Σ=2.45= Expected bits per symbol

Optimality: If the two minimum-weight trees are not the ones combined, then the expected bits per
symbol will be larger than would be computed by the algorithm.

Time: If there are n symbols, then there are n - 1 subtree combining steps to perform. Each step calls
HEAP-EXTRACT-MIN twice and MIN-HEAP-INSERT once.

!

" n logn() overall.

