CSE 2320 Notes 17: Greedy Algorithms

(Last updated 11/24/06 6:21 PM)

CLRS, 16.1-16.3
Concepts

Commitments are based on local decisions:
NO backtracking (as occurred in stack rat-in-a-maze)

NO exhaustive search (as occurred with dynamic programming)
MAIN ISSUE: NOT efficiency . . . Quality of Solution instead
Special situations - exact solution
Prim's MST Dijkstra's shortest path MCP for network flow
More frequently - heuristic (approximation)
Basketball tryout with min-heap
EXAMPLE - activity scheduling (unweighted interval scheduling)
n actitivites

Start time (activity starts exactly at time)
Finish time (activity finishes before this time)

One room
Goal: Maximize number of activities. (Unlike Weighted Interval Scheduling in Notes 16)
Greedy Solution:

1. Sort activities by ascending order of finish time.
2. Consider each activity according to sorted order:

Include activity in schedule only if it does not overlap with other activities in schedule Optimal or heuristic?

Optimality Proof:

1. Suppose there is an alternate schedule with a different first activity:
$\mathrm{s}_{\text {? }} \ldots \mathrm{f}_{\text {? }}<$ rest of schedule $>$
But $s_{1} \ldots f_{1}$ can replace $s_{?} \ldots f_{?}$ since $f_{1} \leq f_{?}$
2. Same argument applies to replacing other activities in the schedule

Problems that can be solved optimally by a greedy method have a simpler structure than problems that require dynamic programming.

Knapsack Problem
Can carry k pounds (to sell) in your knapsack.
Wish to maximize the amount of revenue.
Greedy approach: Choose according to descending order of \$\$\$/lb.
Fractional (divisible) version:
\$\$\$/lb for each divisible item.
Example:
$k=10 \mathrm{lbs}$
Perfume: $\quad \$ 1000 / \mathrm{lb}, 3 \mathrm{lbs}$ available
Chocolate: $\quad \$ 30 / \mathrm{lb}, 5 \mathrm{lbs}$ available
Beans: \$2/lb, 5 lbs available
Rice: $\quad \$ 1 / \mathrm{lb}, 5 \mathrm{lbs}$ available
Optimal or heuristic?
$0 / 1$ (indivisible) version:
Example:

$$
k=10 \mathrm{lbs}
$$

Bottle of wine: $\quad 5 \mathrm{lbs}, \$ 500(\$ 100 / \mathrm{lb})$
Rare book: $\quad 7 \mathrm{lbs}, \$ 900(\$ 129 / \mathrm{lb})$
Sword: 4 lbs, $\$ 500$ (\$125/lb)
Greedy says to choose \qquad , but optimal is \qquad .
(Aside: Dynamic programming solves in $\mathrm{O}(k n)$ time when k and all $2 n$ input values are integers. If all objects have the same $\$ \$ \$ / \mathrm{lb}$ ratio, the resulting subset sum problem can still take exponential time.)

HUFFMAN Codes - elementary data compression for a static distribution of symbols in an alphabet.

Prefix Code Tree

Concept: Letters that appear more often (higher probability) should be assigned shorter codes.
Evaluating a particular code tree (even if not optimal)
Symbol Probability Bits Probability*Bits
A
. 2
2
. 4
B
05
.15
C
. 3
4
1.2
D
E
F

.1	2
.2	2
$===$	
$\Sigma=1.0$	

.6
. 4
==
$\Sigma=2.95=$ Expected bits per symbol

Algorithm: Build up subtrees by pairing trees with lowest probabilities (use min-heap).
.2
(A)

$\stackrel{.2}{\stackrel{1}{5}}$

Symbol Probability Bits Probability*Bits

A	.2	2	.4
B	.05	4	.2
C	.3	2	.6
D	.15	3	.45
E	.1	4	.4
F	.2	2	.4
	$===$		$===$
	$\Sigma=1.0$		$\Sigma=2.45=$ Expected bits per symbol

Optimality: If the two minimum-weight trees are not the ones combined, then the expected bits per symbol will be larger than would be computed by the algorithm.

Time: If there are n symbols, then there are $n-1$ subtree combining steps to perform. Each step calls Heap-Extract-Min twice and Min-Heap-Insert once. $\mathrm{O}(n \log n)$ overall.

