CSE 2320 Notes 17: Greedy Algorithms

(Last updated 11/24/06 6:21 PM)

CLRS, 16.1-16.3

CONCEPTS

Commitments are based on *local* decisions:

NO backtracking (as occurred in stack rat-in-a-maze)

NO exhaustive search (as occurred with dynamic programming)

MAIN ISSUE: NOT efficiency . . . Quality of Solution instead

Special situations - exact solution

Prim's MST Dijkstra's shortest path M	MCP for network flow
---------------------------------------	----------------------

More frequently - heuristic (approximation)

Basketball tryout with min-heap

EXAMPLE – activity scheduling (unweighted interval scheduling)

n actitivites

Start time (activity starts *exactly* at time)

Finish time (activity finishes *before* this time)

One room

Goal: Maximize *number* of activities. (Unlike Weighted Interval Scheduling in Notes 16)

Greedy Solution:

1. Sort activities by ascending order of finish time.

2. Consider each activity according to sorted order:

Include activity in schedule only if it does not overlap with other activities in schedule

Optimal or heuristic?

Optimality Proof:

1. Suppose there is an alternate schedule with a different first activity:

 $s_2 \dots f_2$ < rest of schedule >

But $s_1 \dots f_1$ can replace $s_2 \dots f_2$ since $f_1 \le f_2$

2. Same argument applies to replacing other activities in the schedule

Problems that can be solved optimally by a greedy method have a simpler structure than problems that require dynamic programming.

KNAPSACK PROBLEM

Can carry k pounds (to sell) in your knapsack.

Wish to maximize the amount of revenue.

Greedy approach: Choose according to descending order of \$\$\$/lb.

Fractional (divisible) version:

\$\$\$/lb for each divisible item.

k = 10 lbs

Example:

Perfume:\$1000/lb, 3 lbs availableChocolate:\$30/lb, 5 lbs availableBeans:\$2/lb, 5 lbs availableRice:\$1/lb, 5 lbs available

Optimal or heuristic?

0/1 (indivisible) version:

Example:

k = 10 lbs	
Bottle of wine:	5 lbs, \$500 (\$100/lb)
Rare book:	7 lbs, \$900 (\$129/lb)
Sword:	4 lbs, \$500 (\$125/lb)
Greedy says to choos	se, but optimal is

(Aside: Dynamic programming solves in O(kn) time when k and all 2n input values are integers. If all objects have the same \$\$/lb ratio, the resulting *subset sum* problem can still take exponential time.)

HUFFMAN CODES - elementary data compression for a *static* distribution of symbols in an alphabet.

Prefix Code Tree

Concept: Letters that appear more often (higher probability) should be assigned shorter codes.

Evaluating a particular code tree (even if not optimal)

Symbol	Probability	Bits	Probability*Bits
٨	2	2	4
A	.2	2	.4
В	.05	3	.15
С	.3	4	1.2
D	.15	4	.6
Е	.1	2	.2
F	.2	2	.4
	===		===
	Σ=1.0		Σ =2.95= Expected bits per symbol

Algorithm: Build up subtrees by pairing trees with lowest probabilities (use min-heap).

Optimality: If the two minimum-weight trees are *not* the ones combined, then the expected bits per symbol will be larger than would be computed by the algorithm.

Time: If there are *n* symbols, then there are n - 1 subtree combining steps to perform. Each step calls HEAP-EXTRACT-MIN twice and MIN-HEAP-INSERT once. $O(n \log n)$ overall.