Dynamic Growth & Double Hashing

Concept: When the load factor (α) reaches a *fixed* threshold, either (1) build a new double hash table whose size is fractionally larger (*n*) than the old table (*cn*) or (2) build a new double hash table whose size (*n*) is a fixed constant larger than the old table (*n* - *c*).

Analysis of expected insertion cost alone

Fractional Growth:

T(n) = T(cn) + dn where *d* is based on initializing new table and (total) expected insertion cost to reach α .

> O(n) by substitution method :Assume $T(k) \le ek$ for k < n $T(cn) \le ecn$ for c < 1 $T(n) \le ecn + dn$ = en + dn + (ec - e)n $\le en$ if $e - ec \ge d$

Fixed Growth:

T(n) = T(n-c) + dn where *d* is based on initializing new table and expected insertion cost to reach α .

$$O(n^{2}) \text{ by substitution method}$$

Assume $T(k) \le ek^{2}$ for $k < n$
 $T(n-c) \le e(n-c)^{2} = en^{2} - 2cen + ec^{2}$
 $T(n) \le en^{2} - 2cen + ec^{2} + dn$
 $\le en^{2}$ if $2ce \ge d$ (ignoring ec^{2})