
CSE 2320 Lab Assignment 3

Due July 20, 2011

Goals:

Understanding of the five steps for developing a dynamic programming solution.

Requirements:

1. Use Java to implement a

€

Θ kn() -time,

€

Θ k + n() -space dynamic programming (not greedy!) algorithm
to determine a minimum cost sequence of parking permits to cover

€

n not-necessarily-adjacent days
you need to drive downtown. Each element of a solution sequence will be one of

€

k available permit
types, each covering a different number of consecutive days at some cost.

 The

€

k + n +1 input lines will be accessed using System.in (use java.util.Scanner). The
first line of the input will be positive integers for

€

k and

€

n .

€

k ≤10 and

€

n ≤100 . The next

€

k lines will
be pairs of positive integers for the permit types. The two values of a pair will be the number of days
and cost, respectively. Note that the

€

k pairs will appear in strictly increasing order for the number of
days and likewise for the costs. (For example, nobody will spend $20 for a three-day permit if a four-
day permit is just $15.) Each of the remaining

€

n lines will contain an integer corresponding to a day
you must park. These values appear in strictly increasing order.

 The output is 1) the table of subproblems, i.e. their cost and backtrace information, 2) the cost of the

final solution, and 3) the sequence of permits needed and the range of days covered by each. The
sequence may be output in reverse order. The last day for the last permit should be the last day you
need to park. The start date for the first permit may be earlier than the first day you need to park.

2. Email your program to hafizfahad@mavs.uta.edu by 12:45 p.m. on July 20, 2011.

Getting Started:

1. The left column gives an input instance and the right column gives a solution:

3 10
1 5
2 7
3 9
1
2
3
4
7
8
9
12
13
15

DP table:
prefixCost[0]=5 permitTypeUsed[0]=0
prefixCost[1]=7 permitTypeUsed[1]=1
prefixCost[2]=9 permitTypeUsed[2]=2
prefixCost[3]=14 permitTypeUsed[3]=0
prefixCost[4]=19 permitTypeUsed[4]=0
prefixCost[5]=21 permitTypeUsed[5]=1
prefixCost[6]=23 permitTypeUsed[6]=2
prefixCost[7]=28 permitTypeUsed[7]=0
prefixCost[8]=30 permitTypeUsed[8]=1
prefixCost[9]=35 permitTypeUsed[9]=0
Cost is 35
Permits used are:
Permit type 0 cost 5 begin 15 end 15
Permit type 1 cost 7 begin 12 end 13
Permit type 2 cost 9 begin 7 end 9
Permit type 0 cost 5 begin 4 end 4
Permit type 2 cost 9 begin 1 end 3

2. This problem is slightly similar to the weighted interval scheduling problem in Notes 7. In particular,
an optimal solution is determined for every prefix of the input sequence of n days.

3. Achieving

€

Θ kn() time requires maintaining a table with

€

k entries whose entry

€

i indicates the
subscript of the latest input day such that a permit of type

€

i cannot cover both this day and the day
whose subproblem is under consideration. It is convenient to initialize the entries of this table to -1.

