CSE 2320 Notes 1: Algorithmic Concepts

(CLRS, Chapters 1 & 2)

Pseudocode Conventions (p. 20-22)

Array Subscripts:

Book: 1...n
Notes/C/Java Code: 0...n-1

1.A. QUADRATIC TIME Sorts:

Selection Sort (CLRS exercise 2.2-2)

```c
void selection(Item a[], int ell, int r)
{
    int i, j;
    for (i = ell; i < r; i++)
    {
        int min = i;
        for (j = i+1; j <= r; j++)
            if (less(a[j], a[min]))
                min = j;
        exch(a[i], a[min]);
    }
}
```

Always uses \(\sum_{i=2}^{n} (i-1) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \approx \frac{n^2}{2} \) comparisons and is not stable (CLRS, p. 196).

(Aside: https://www.americanscientist.org/article/198295/gausss-day-of-reckoning)

Insertion Sort (CLRS p.18, http://ranger.uta.edu/~weems/NOTES2320/insertionSort.c)

```c
void insertionSort(Item *a, int N) // Guaranteed stable
{
    int i,j;
    Item v;
    for (i=1; i<N; i++)
    {
        v=a[i];
        j=i;
        while (j>=1 && less(v,a[j-1]))
        {
            a[j]=a[j-1];
            j--;
        }
        a[j]=v;
    }
}
```
Maximum ("worst case") number of times that body of \(j \)-loop executes for a particular value of \(i \)?

Maximum number of times that body of \(j \)-loop executes over entire sort?

\[
\frac{k}{2} \sum_{i=1}^{k} i = \frac{k(k + 1)}{2} = ?
\]

Expected ("average") number of times that body of \(j \)-loop executes for a particular value of \(i \)?

Expected number of times that body of \(j \)-loop executes over entire sort?

1.B. DIVIDE AND CONQUER (Decomposition)

1. Divide into subproblems (unless size allows a trivial solution).
2. Conquer the subproblems.
3. Combine solutions to subproblems.

(Binary) Mergesort – An “Optimal” Key-Comparison Sort (http://ranger.uta.edu/~weems/NOTES2320/mergesort.new.c)

1. Split (copy) array into two sub-arrays (unless \(n<2 \)).
2. Call Mergesort recursively for each sub-array.
3. Merge together the two ordered sub-arrays.
int merge(int *in1, int *in2, int *out1, int in1Size, int in2Size)
{
 int i, j, k;
 i=j=k=0;
 while (i<in1Size && j<in2Size)
 {
 if (in1[i]<in2[j])
 out1[k++]=in1[i++];
 else
 out1[k++]=in2[j++];
 if (i<in1Size)
 for (; i<in1Size; i++)
 out1[k++]=in1[i];
 else
 for (; j<in2Size; j++)
 out1[k++]=in2[j];
 }
 return k;
}

How are items with identical keys (“duplicates”) handled?

[Write body of while-loop with ?: expression. Code for linked lists, files, streams, etc.]

Fall 2009 Test Problem Applying Merge Concept

Two int arrays, A and B, contain m and n ints each, respectively. The elements within each of these arrays appear in ascending order without duplication (i.e. each table represents a set). Give Java code for a $\Theta(m + n)$ algorithm to find the symmetric difference by producing a third array C (in ascending order) with the values that appear in exactly one of A and B and sets the variable p to the final number of elements copied to C. (Details of input/output, allocation, declarations, error checking, comments and style are unnecessary.)

 i=j=p=0;
 while (i<m && j<n)
 {
 if (A[i]<B[j])
 C[p++]=A[i++];
 else if (A[i]>B[j])
 C[p++]=B[j++];
 else
 {
 i++;
 j++;
 }
 }
 for (; i<m; i++)
 C[p++]=A[i];
 for (; j<n; j++)
 C[p++]=B[j];
How much work (time) in worse case? \((T(n) - a\ recurrence)\)

1. Split: \(n\) steps. [Can reduce to constant time by pointer arithmetic.]
2. Call recursively:

\[
T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right)
\]

3. Merge together \((n\) steps)

\[
T(n) = c_1 n + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + c_2 n = cn \log_2 n
\]

Recursion Tree

\[
\begin{align*}
T(n=2^k) &= \\
T(n/2=2^{k-1}) &= \\
T(n/4=2^{k-2}) &= \\
T(n/8=2^{k-3}) &= \\
\vdots \\
T(n/2^k=2^{k-k}) &= \\
\end{align*}
\]

[Don’t generalize from this example of a recursion tree. More of these in Notes 04.]
1.C. **Binary Search** - “Optimal” Search of an Ordered Table (or “Space”)

Concept – search ordered table in logarithmic time. Consider table with \(2^k - 1\) slots.

![Binary Search Tree Diagram](http://ranger.uta.edu/~weems/NOTES2320/binarySearch.c)

```c
int binSearch(int *a, int n, int key)
// Input: int array a[] with n elements in ascending order.
//        int key to find.
// Output: Returns some subscript of a where key is found.
//         Returns -1 if not found.
// Processing: Binary search.
{
    int low, high, mid;
    low = 0;
    high = n - 1;
    // subscripts between low and high are in search range.
    // size of range halves in each iteration.
    while (low <= high)
    {
        mid = (low + high) / 2;
        if (a[mid] == key)
            return mid; // key found
        if (a[mid] < key)
            low = mid + 1;
        else
            high = mid - 1;
    }
    return (-1); // key does not appear
}
```

Recursive binary search?
Multiple occurrences of keys (http://ranger.uta.edu/~weems/NOTES2320/binarySearchRange.c)

Find \(i \) such that \(a\[i-1\] < \text{key} \leq a\[i\] \)

```c
int binSearchFirst(int *a, int n, int key)
// Input: int array a[] with n elements in ascending order.
//        int key to find.
// Output: Returns subscript of the first a element >= key.
//        Returns n if key>a[n-1].
// Processing: Binary search.
{
    int low, high, mid;
    low = 0;
    high = n - 1;
    // Subscripts between low and high are in search range.
    // Size of range halves in each iteration.
    // When low>high, low==high+1 and a[high]<key and a[low]>=key.
    while (low <= high)
    {
        mid = (low + high) / 2;
        if (a[mid] < key)
            low = mid + 1;
        else
            high = mid - 1;
    }
    return low;
}
```

Relationship of low and high on return?

Find \(i \) such that \(a\[i\] \leq \text{key} < a\[i+1\] \)

```c
int binSearchLast(int *a, int n, int key)
{
    // Input: int array a[] with n elements in ascending order.
    //        int key to find.
    // Output: Returns subscript of the last a element <= key.
    //        Returns -1 if key<a[0].
    // Processing: Binary search.
    int low, high, mid;
    low = 0;
    high = n - 1;
    // subscripts between low and high are in search range.
    // size of range halves in each iteration.
    // When low>high, low==high+1 and a[high]<=key and a[low]>key.
    while (low <= high)
    {
        mid = (low + high) / 2;
        if (a[mid] <= key)
            low = mid + 1;
        else
            high = mid - 1;
    }
    return high;
}
```

Relationship of low and high on return?
Partial output from `binarySearchRange.c` (count is last-first+1)

<table>
<thead>
<tr>
<th>key</th>
<th>first</th>
<th>last</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>