CSE 2320 Notes 3: Summations
(Last updated 8/31/18 3:40 PM)
CLRS, appendix A

3.A. GEOMETRIC SERIES (review)
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3.B. HARMONIC SERIES
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3.C. APPROXIMATION BY INTEGRALS (p. 1154-1155)

For a monotonically increasing function (x <y= f(x)= f( y)):
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Since:

k+1
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in this situation.



3.D. BOUNDING SUMMATIONS USING MATH INDUCTION AND INEQUALITIES
[Techniques are especially important for recurrences in notes 4]
Z. n 1)(2n+1
Show Elz = @(n3) [Trivial to show using integration or 21’2 = M‘]
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(i1) Suppose this holds for n:
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Now go on to n + 1 and show that the bound stil/ holds
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The bridging step (???) separates the bounding term (c(n + 1)3) from everything else (x):

c(n+1)3+x=cn3+n2+2n+1

x=cn3+n2+2n+1—cn3—30n2—3cn—c=(1—3c)n2+(2—3c)n+1—c

So 227 is now ¢(n + 1)3 + [(1 - 3c)n2 +(2-3c)n+1-c

Can drop [ . .. ] (through <) if it cannot become positive. Happens if ¢ = 1



b. Show Q(n°)
n=l ) 3
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(i1) Suppose this holds for n:

Now go on to n + 1 and show that the bound stil/ holds
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The bridging step (???) involves the same algebra as before.

Candrop [ . .. ] (through =) if it cannot become negative. Happens if 0 <c < 1/3

&2 2
Suppose we attempt to show El = @(n )
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a. Show O(n")
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(i) Y i =1=cn” using any constant ¢ = 1
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(i1) Suppose this holds for n:

n
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Now attempt to goonton + 1.



n+l n
i2 = Eiz +(n +1)2
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scn2+n2+2n+1

=777

< c(n + 1)2

The bridging step separates the bounding term from everything else:
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c(n+1)2+x=cn +n2+2n+1

2, .2

X=cn“+n +2n+1—cn2—2cn—c=n2

+(2-2c)n+1-c
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SO???isnowC(n+1) +|n +(2—20)n+1—c

Candrop [ . .. ] (through <) if it cannot become positive. Fails as n grows.
. 2
b. Can still show Q(n ")

n=1 5 ’
Q) Y i =1=cn” using any constant 0 < ¢ < 1

=1

(i1) Suppose this holds for n:

n
Eiz > cn?
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Now goonton+ 1.



n+l n
S 2= 3+ (n+1)?
i=1 i=1
n
= Ei2+n2+2n+1
i=1
zcn2+n2+2n+1

=777
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The bridging step separates the bounding term from everything else:

c(n+1)2+x=cn2+n2+2n+1

x=cn2+n2+2n+1—cn2—2cn—c=n2+(2—2c)n+1—c

So 77 is now c(n+1)2+ n2+(2—2c)n+1—c

Candrop [ . .. ] (through =) if it cannot become negative.

Happens if 0 < ¢ =< 1 (or for “sufficiently large” n).



