
CSE 2320 Notes 13:  Hashing 
 

(Last updated 10/30/18 4:37 PM) 
 
CLRS 11.1-11.4 (skip 11.3.3) 
 
13.A.  CONCEPTS 
 
Goal:  Achieve faster operations than balanced trees (nearly 

€ 

Ο 1( )  expected time) by using “randomness” 
in key sets by sacrificing 1) generality and 2) ordered retrieval. 
 

Table
Subscripts

Set of
Potential

Keys
Mapping

(h)

 
 
Regardless of the hash function, a dynamic set of keys will lead to collisions. 
 
Birthday paradox 
 
 366 different birthdays available 
 
 How many (random) persons are needed to have at least even odds of two persons with the 
 same birthday?   23 
 

 Probability of k persons having k different birthdays is 

€ 

366 − i
366i=1

k−1
∏  

 
probability of unique birthdays among 0 people is 1 
probability of unique birthdays among 1 people is 1 
probability of unique birthdays among 2 people is 0.997268 
probability of unique birthdays among 3 people is 0.991818 
probability of unique birthdays among 21 people is 0.557221 
probability of unique birthdays among 22 people is 0.525249 
probability of unique birthdays among 23 people is 0.493677 
probability of unique birthdays among 24 people is 0.462654 
probability of unique birthdays among 57 people is 0.0100102 
probability of unique birthdays among 58 people is 0.00845124 
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13.B.  HASH FUNCTIONS 
 
Modular (AKA remaindering or division method) 
 
 h(key) = key % m 
 
 m is the table size 
 
 Folklore:  Make m prime, regardless of collision handling technique.  Double hashing requires. 
 
Multiplicative 
 

hash = m * (0.710123587*key - (int)(0.710123587*key)); 
 
Universal Hashing - aside 
 
 Use parameterized hash function to minimize chance of getting collisions beyond expectation. 
 
 Parameters are randomly generated when hash structure is initialized. 
 
Text Strings as Key 
 

scanf("%s",str); 
hash=0; 
for (i=0; 
     str[i]!=0; 
     i++) 
  hash = (hash*10 + str[i]) % m; 
printf("%s => %d\n",str,hash); 

 
 A string’s signature may be stored in a data structure, even if hashing is not used. 
 
13.C.  COLLISION HANDLING BY CHAINING 
 
Concept – Use table of pointers to unordered linked lists.  Elements of a list have the same signature. 
 

Load Factor 

€ 

=α =
#  elements stored

#  slots in table
 

 
Often stated as a per cent.  For some methods, such as chaining, α can exceed 100%. 
 

Expected probes is 

€ 

n
2m

=
α
2

 for hits and 

€ 

n
m

=α  for misses. 
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13.D.  COLLISION HANDLING BY OPEN ADDRESSING 
 
Saves space when records are small, so chaining would waste a large fraction of space for links. 
 
Collisions are handled by using a probe sequence for each key – a permutation of the table’s subscripts. 
 
Hash function is h(key, i) where i is the number of reprobe attempts tried. 
 
Two special key values (or flags) are often used:  never-used (-1) and recycled (-2).  Searches stop on 
never-used, but continue on recycled.  (For linear probing, but not double hashing - can also reinsert 
records past the emptied slot for a deletion.) 
 
Linear Probing - h(key, i) = (key + i) % m ( http://ranger.uta.edu/~weems/NOTES2320/hashLP.c ) 
 
 Properties: 
 

1. Probe sequences eventually hit all slots. 
 
2. Probe sequences wrap back to beginning of table. 
 
3. Long clusters of contiguous occupied slots are costly for misses. 
 
4. There are only m probe sequences.  Two keys hashing to same initial slot have the same 

probe sequence. 
 
What about using h(key, i) = (key + 2*i) % 101 or h(key, i) = (key + 50*i) % 1000? 
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Suppose all keys are equally likely to be accessed.  Is there a best order for inserting keys? 
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Insert keys:  101, 171, 102, 103, 104, 105, 106

 
 
 
Double Hashing – h(key, i) = (h1(key) + i*h2(key)) % m 
( http://ranger.uta.edu/~weems/NOTES2320/hashDH.c ) 
 
 Properties: 
 

1. Probe sequences will hit all slots only if m is prime. 
 
2. m(m – 1) probe sequences.  Unlikely that two keys hashing to the same initial slot will have 

the same probe sequence. 
 
3. Minimizes effect of clustering.   
 
Typical Hash Functions: 
 
h1 = key % m 
 
h2 = 1 + key % (m – 1) 
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  Key h1 h2 

  1313 0 6 

  2626 0 11 

  24 11 1 

  19 6 8 

  136 6 5 

  140 10 9 

  23 10 12 

  29 3 6 

  2600 0 9 

  1305 5 10 

 

 
13.E.  UPPER BOUNDS ON EXPECTED PERFORMANCE FOR OPEN ADDRESSING 
 
Double hashing comes very close to these results, but analysis assumes that hash function provides 
all m! permutations of subscripts. 
 

1. Unsuccessful search when load factor is 

€ 

α =
n
m

.  Each successive probe has the effect of decreasing 

both the number of slots in the table and the number of occupied slots by one. 
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a. Probability that a search has a first probe   1 
 

b. Probability that search goes on to a second probe  

€ 

α =
n
m

 

 

c. Probability that search goes on to a third probe  

€ 

α
n −1
m −1

<α
n
m

<α2  

 

d. Probability that search goes on to a fourth probe  

€ 

α
n −1
m −1

n − 2
m − 2

<α2 n − 2
m − 2

<α3 

 
. . . 

 
 Suppose the table is large.  Sum the probabilities for probes to get upper bound on expected number 

of probes: 
 

  

€ 

αi

i=0

∞
∑ =

1
1−α

   (much worse than chaining) 

 
2. Inserting a key when load factor is α 
 

a. Exactly like unsuccessful search 
 

b. Upper bound of 

€ 

1
1−α

 probes 

 
3. Successful search 
 

a. Searching for a key takes as many probes as inserting that particular key. 
 
b. Each inserted key increases the load factor, so the inserted key number i + 1 is expected 
 to take no more than 
 

 

€ 

1

1− i
m

=
m
m − i

 probes 
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c. Find expected probes for n keys inserted into an empty table (each key is equally likely to be 

requested): 
 

 

€ 

1
n

m
m − ii=0

n−1
∑ =

m
n

1
m − ii=0

n−1
∑       Sum is 1

m
+

1
m −1

+ ...+ 1
m − n +1

                 =
m
n

1
ii=m−n+1

m
∑ ≤

m
n

1
xm−n

m
∫ dx      Upper bound on sum for decreasing function.

                 =
m
n

lnm − ln m − n( )( ) =
1
α

ln m
m − n

=
1
α

ln 1
1−α

 

 
 
alpha 0.200 unsuccessful (insert) 1.250 successful 1.116 
alpha 0.250 unsuccessful (insert) 1.333 successful 1.151 
alpha 0.300 unsuccessful (insert) 1.429 successful 1.189 
alpha 0.350 unsuccessful (insert) 1.538 successful 1.231 
alpha 0.400 unsuccessful (insert) 1.667 successful 1.277 
alpha 0.450 unsuccessful (insert) 1.818 successful 1.329 
alpha 0.500 unsuccessful (insert) 2.000 successful 1.386 
alpha 0.550 unsuccessful (insert) 2.222 successful 1.452 
alpha 0.600 unsuccessful (insert) 2.500 successful 1.527 
alpha 0.650 unsuccessful (insert) 2.857 successful 1.615 
alpha 0.700 unsuccessful (insert) 3.333 successful 1.720 
alpha 0.750 unsuccessful (insert) 4.000 successful 1.848 
alpha 0.800 unsuccessful (insert) 5.000 successful 2.012 
alpha 0.850 unsuccessful (insert) 6.667 successful 2.232 
alpha 0.900 unsuccessful (insert) 10.000 successful 2.558 
alpha 0.910 unsuccessful (insert) 11.111 successful 2.646 
alpha 0.920 unsuccessful (insert) 12.500 successful 2.745 
alpha 0.930 unsuccessful (insert) 14.286 successful 2.859 
alpha 0.940 unsuccessful (insert) 16.666 successful 2.993 
alpha 0.950 unsuccessful (insert) 20.000 successful 3.153 
alpha 0.960 unsuccessful (insert) 25.000 successful 3.353 
alpha 0.970 unsuccessful (insert) 33.333 successful 3.615 
alpha 0.980 unsuccessful (insert) 49.998 successful 3.992 
alpha 0.990 unsuccessful (insert) 99.993 successful 4.652 
 
“Fast and Powerful Hashing Using Tabulation”, CACM 60 (7), July 2017,  
https://dl-acm-org.ezproxy.uta.edu/citation.cfm?id=3068772 


