CSE 2320 Notes 15: Minimum Spanning Trees

(Last updated 11/12/18 2:47 PM)

CLRS 21.3, 23.1-23.2

15.A. CONCEPTS

Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the vertices. (AKA bottleneck shortest path tree)

Cut Property: Suppose S and T partition V such that

 $\begin{array}{ll} 1. & S \cap T = \varnothing \\ 2. & S \cup T = V \\ 3. & |S| > 0 \mbox{ and } |T| > 0 \end{array}$

then there is some MST that includes a minimum weight edge $\{s, t\}$ with $s \in S$ and $t \in T$.

Proof:

Suppose there is a partition with a minimum weight edge $\{s, t\}$.

A spanning tree without {s, t} must still have a path between s and t.

Since $s \in S$ and $t \in T$, there must be at least one edge $\{x, y\}$ on this path with $x \in S$ and $y \in T$.

By removing $\{x, y\}$ and including $\{s, t\}$, a spanning tree whose total weight is no larger is obtained. •••

Cycle Property: Suppose a given spanning tree does not include the edge $\{u, v\}$. If the weight of $\{u, v\}$ is no larger than the weight of an edge $\{x, y\}$ on the <u>unique</u> spanning tree path between u and v, then replacing $\{x, y\}$ with $\{u, v\}$ yields a spanning tree whose weight does not exceed that of the original spanning tree.

Proof: Including $\{u, v\}$ in the set of chosen edges introduces a cycle, but removing $\{x, y\}$ will remove the cycle to yield a modified tree whose weight is no larger.

The proof suggests a slow approach - iteratively find and remove a maximum weight edge from some remaining cycle:

15.B. PRIM'S ALGORITHM – Three versions

Prim's algorithm applies the cut property by having S include those vertices connected by a subtree of the eventual MST and T contains vertices that have not yet been included. A minimum weight edge from S to T will be used to move one vertex from T to S

1. "Memoryless" – Only saves partial MST and current partition. (http://ranger.uta.edu/~weems/NOTES2320/primMemoryless.c)

```
Place any vertex x \in V in S.
T = V - \{x\}
while T \neq \emptyset
```

Find the minimum weight edge $\{s, t\}$ over all $t \in T$ and all $s \in S$. (Scan adj. list for each t) Include $\{s, t\}$ in MST.

 $T = T - \{t\}$ $S = S \cup \{t\}$

Since no substantial data structures are used, this takes $\Theta(EV)$ time.

Which edge does Prim's algorithm select next?

2. Maintains T-table that provides the closest vertex in S for each vertex in T. (http://ranger.uta.edu/~weems/NOTES2320/primTable.c traverses adjacency lists)

Eliminates scanning all T adjacency lists in every phase, but still scans the adjacency list of the last vertex moved from T to S.

```
Place any vertex x \in V in S.

T = V - \{x\}

for each t \in T

Initialize T-table entry with weight of \{t, x\} (or \infty if non-existent) and x as best-S-neighbor

while T \neq \emptyset

Scan T-table entries for the minimum weight edge \{t, best-S-neighbor[t]\}

over all t \in T and all s \in S.

Include edge \{t, best-S-neighbor[t]\} in MST.

T = T - \{t\}

S = S \cup \{t\}

for each vertex x in adjacency list of t

if x \in T and weight of \{x, t\} < T-weight[x]

T-weight[x] = weight of \{x, t\}

best-S-neighbor[x] = t
```

What are the T-table contents before and after the next MST vertex is selected?

Analysis:

Initializing the T-table takes $\Theta(V)$. Scans of T-table entries contribute $\Theta(V^2)$. Traversals of adjacency lists contribute $\Theta(E)$. $\Theta(V^2 + E)$ overall worst-case. 3. Replace T-table by a min-heap. (http://ranger.uta.edu/~weems/NOTES2320/primHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move from T to S improves.

```
Place any vertex x \in V in S.
T = V - \{x\}
for each t \in T
       Load T-heap entry with weight (as the priority) of \{t, x\} (or \infty if non-existent) and x as
               best-S-neighbor
minHeapInit(T-heap) // a fixDown at each parent node in heap
while T \neq \emptyset
       Use heapExtractMin /* fixDown */ to obtain T-heap entry with the minimum weight edge
               over all t \in T and all s \in S.
       Include edge {t, best-S-neighbor[t]} in MST.
       T = T - \{t\}
       S = S \cup \{t\}
       for each vertex x in adjacency list of t
               if x \in T and weight of \{x, t\} < T-weight[x]
                       T-weight[x] = weight of {x, t}
                       best-S-neighbor[x] = t
                       minHeapChange(T-heap) // fixUp
```

Analysis:

Initializing the T-heap takes $\Theta(V)$. Total cost for heapExtractMins is $\Theta(V \log V)$. Traversals of adjacency lists and minHeapChanges contribute $\Theta(E \log V)$. $\Theta(E \log V)$ overall worst-case, since E > V.

Which version is the fastest?

Abstraction:

```
Set of n elements: 0 \dots n - 1
```

Initially all elements are in *n* different subsets

find(i) - Returns integer ("leader") indicating which subset includes i

i and j are in the same subset \Leftrightarrow find(i)==find(j)

union(i,j) - Takes the set union of the subsets with leaders i and j.

Results of previous finds are invalid after a union.

Implementation 1: (http://ranger.uta.edu/~weems/NOTES2320/ufl.c)

Initialization:

```
for (i=0; i<n; i++)</pre>
  id[i]=i;
```

find(i):

```
return id[i];
unionFunc(i,j):
      for (k=0; k<n; k++)</pre>
        if (id[k]==i)
           id[k]=j;
```

0	1	2	3	4
0	1	2	3	4

Implementation 2: (http://ranger.uta.edu/~weems/NOTES2320/uf2.c)

```
find(i):
      while (id[i]!=i)
        i=id[i];
      return i;
unionFunc(i,j):
```

0	1	2	3	4
0	1	2	3	4

id[i]=j;

Implementation 3: (http://ranger.uta.edu/~weems/NOTES2320/uf3.c)

Initialization:

```
for (i=0; i<n; i++)</pre>
{
  id[i]=i;
  sz[i]=1;
}
```

```
find(x):
```

```
for (i=x;
           id[i]!=i;
           i=id[i])
        ;
      root=i;
      // path compression - make all nodes on path
      // point directly at the root
      for (i=x;
           id[i]!=i;
           j=id[i],id[i]=root,i=j)
        ;
      return root;
unionFunc(i,j):
      if (sz[i]<sz[j])</pre>
      {
        id[i]=j;
        sz[j]+=sz[i];
      }
      else
      {
        id[j]=i;
        sz[i]+=sz[j];
```

Best-case (shallow tree) and worst-case (deep tree) for a sequence of unions?

15.D. KRUSKAL'S ALGORITHM – A Simple Method for MSTs Based on Union-Find Trees (http://ranger.uta.edu/~weems/NOTES2320/kruskal.c)

Sort edges in ascending weight order.

Place each vertex in its own set.

}

Process each edge $\{x, y\}$ in sorted order:

```
\begin{array}{l} a=FIND(x)\\ b=FIND(y)\\ \text{if } a\neq b\\ & UNION(a,b)\\ & Include \ \{x, y\} \text{ in MST} \end{array}
```


1	$\{0, 1\}$	12	$\{2, 5\}$
2	{1, 3}	13	{8, 9}
3	{0, 3}	14	{2, 6}
3	<i>{</i> 7 <i>,</i> 9 <i>}</i>		
4	{0, 4}	15	{7, 8}
5	{3, 4}	16	{4, 7}
6	<i>{</i> 3 <i>,</i> 5 <i>}</i>	17	<i>{</i> 5 <i>,</i> 9 <i>}</i>
7	{4, 5}	18	{5, 7}
8	{6, 10}	19	<i>{</i> 6 <i>,</i> 9 <i>}</i>
9	{9, 10}	20	{4, 8}
10	{1, 5}	21	{2, 10}
11	{1, 2}	22	{5, 6}

Time to sort, $\Theta(E \log V)$, dominates computation