
CSE 2320 Notes 15:  Minimum Spanning Trees 
 

(Last updated 11/12/18 2:47 PM) 
 
CLRS 21.3, 23.1-23.2 
 
15.A.  CONCEPTS 
 
Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the 
vertices.  (AKA bottleneck shortest path tree) 
 
Cut Property:  Suppose S and T partition V such that 
 

1. S ∩ T = ∅ 
2. S ∪ T = V 
3. |S| > 0 and |T| > 0 

 
then there is some MST that includes a minimum weight edge {s, t} with s ∈ S and t ∈ T. 
 
Proof: 
 

Suppose there is a partition with a minimum weight edge {s, t}. 
 
A spanning tree without {s, t} must still have a path between s and t. 
 
Since s ∈ S and t ∈ T, there must be at least one edge {x, y} on this path with x ∈ S and y ∈ T. 
 
By removing {x, y} and including {s, t}, a spanning tree whose total weight is no larger is 
obtained.  ••• 
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Cycle Property:  Suppose a given spanning tree does not include the edge {u, v}.  If the weight of {u, v} 
is no larger than the weight of an edge {x, y} on the unique spanning tree path between u and v, then 
replacing {x, y} with {u, v} yields a spanning tree whose weight does not exceed that of the original 
spanning tree. 
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Proof:  Including {u, v} in the set of chosen edges introduces a cycle, but removing {x, y} will remove 
the cycle to yield a modified tree whose weight is no larger. 
 
The proof suggests a slow approach - iteratively find and remove a maximum weight edge from some 
remaining cycle: 
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15.B.  PRIM’S ALGORITHM – Three versions 
 
Prim’s algorithm applies the cut property by having S include those vertices connected by a subtree of 
the eventual MST and T contains vertices that have not yet been included.  A minimum weight edge 
from S to T will be used to move one vertex from T to S 
 
1. “Memoryless” – Only saves partial MST and current partition.  
 ( http://ranger.uta.edu/~weems/NOTES2320/primMemoryless.c ) 

 
Place any vertex x ∈ V in S. 
T = V – {x} 
while T ≠ ∅ 
 Find the minimum weight edge {s, t} over all t ∈ T and all s ∈ S.  (Scan adj. list for each t) 

Include {s, t} in MST. 
 T = T – {t} 
 S = S ∪ {t} 
 
Since no substantial data structures are used, this takes 

€ 

Θ EV( )  time. 
 
Which edge does Prim’s algorithm select next? 
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2. Maintains T-table that provides the closest vertex in S for each vertex in T.   
 ( http://ranger.uta.edu/~weems/NOTES2320/primTable.c traverses adjacency lists) 
 
Eliminates scanning all T adjacency lists in every phase, but still scans the adjacency list of the last 
vertex moved from T to S. 
 
Place any vertex x ∈ V in S. 
T = V – {x} 
for each t ∈ T 
 Initialize T-table entry with weight of {t, x} (or ∞ if non-existent) and x as best-S-neighbor 
while T ≠ ∅ 
 Scan T-table entries for the minimum weight edge {t, best-S-neighbor[t]} 

over all t ∈ T and all s ∈ S. 
Include edge {t, best-S-neighbor[t]} in MST. 

 T = T – {t} 
 S = S ∪ {t} 
 for each vertex x in adjacency list of t 
  if x ∈ T and weight of {x, t} < T-weight[x] 
   T-weight[x] = weight of {x, t} 
   best-S-neighbor[x] = t 
 
What are the T-table contents before and after the next MST vertex is selected? 
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6 14 (2) 
 
7 16 (4) 
 
8 20 (4) 
 
9 17 (5) 
 
10 21 (2) 

 
Analysis: 
 

Initializing the T-table takes Θ(V). 
Scans of T-table entries contribute Θ(V2). 
Traversals of adjacency lists contribute Θ(E). 

€ 

Θ V2 + E# 
$ 
% & 

' 
(  overall worst-case. 
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3. Replace T-table by a min-heap.  
  ( http://ranger.uta.edu/~weems/NOTES2320/primHeap.cpp ) 
 
The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move 
from T to S improves. 
 
Place any vertex x ∈ V in S. 
T = V – {x} 
for each t ∈ T 
 Load T-heap entry with weight (as the priority) of {t, x} (or ∞ if non-existent) and x as  

best-S-neighbor 
minHeapInit(T-heap)  // a fixDown at each parent node in heap 
while T ≠ ∅ 
 Use heapExtractMin /* fixDown */ to obtain T-heap entry with the minimum weight edge  
  over all t ∈ T and all s ∈ S. 

Include edge {t, best-S-neighbor[t]} in MST. 
 T = T – {t} 
 S = S ∪ {t} 
 for each vertex x in adjacency list of t 
  if x ∈ T and weight of {x, t} < T-weight[x] 
   T-weight[x] = weight of {x, t} 
   best-S-neighbor[x] = t 
   minHeapChange(T-heap)  // fixUp 
 
Analysis: 
 
 Initializing the T-heap takes Θ(V). 

Total cost for heapExtractMins is Θ(V log V). 
Traversals of adjacency lists and minHeapChanges contribute Θ(E log V). 

€ 

Θ E logV( )overall worst-case, since E > V. 
 
Which version is the fastest? 
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15.C.  UNION-FIND TREES TO REPRESENT DISJOINT SUBSETS 
 
Abstraction: 
 
 Set of n elements:  0 . . n - 1 
 
 Initially all elements are in n different subsets 
 
 find(i) - Returns integer (“leader”) indicating which subset includes i 
 
  i and j are in the same subset ⇔ find(i)==find(j) 
 
 union(i,j) - Takes the set union of the subsets with leaders i and j. 
 
  Results of previous finds are invalid after a union. 
 
Implementation 1:  ( http://ranger.uta.edu/~weems/NOTES2320/uf1.c ) 
 
 Initialization: 
 
  for (i=0; i<n; i++) 
    id[i]=i; 
 
 find(i): 
 
  return id[i]; 
 
 unionFunc(i,j): 
 
  for (k=0; k<n; k++) 
    if (id[k]==i) 
      id[k]=j; 
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Implementation 2:  ( http://ranger.uta.edu/~weems/NOTES2320/uf2.c ) 
 
 find(i): 
 
  while (id[i]!=i) 
    i=id[i]; 
  return i; 
 
 unionFunc(i,j): 
 
  id[i]=j; 
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Implementation 3:  ( http://ranger.uta.edu/~weems/NOTES2320/uf3.c ) 
 
 Initialization: 
 
  for (i=0; i<n; i++) 
  { 
    id[i]=i; 
    sz[i]=1; 
  } 
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 find(x): 
 
  for (i=x; 
       id[i]!=i; 
       i=id[i]) 
    ; 
  root=i; 
  // path compression - make all nodes on path 
  // point directly at the root 
  for (i=x; 
       id[i]!=i; 
       j=id[i],id[i]=root,i=j) 
    ; 
  return root; 
 
 unionFunc(i,j): 
 
  if (sz[i]<sz[j]) 
  { 
    id[i]=j; 
    sz[j]+=sz[i]; 
  } 
  else 
  { 
    id[j]=i; 
    sz[i]+=sz[j]; 
  } 
 
 Best-case (shallow tree) and worst-case  (deep tree) for a sequence of unions? 
 
 
 
 
 
 
 
 
15.D.  KRUSKAL’S ALGORITHM – A Simple Method for MSTs Based on Union-Find Trees 
( http://ranger.uta.edu/~weems/NOTES2320/kruskal.c ) 
 
Sort edges in ascending weight order. 
 
Place each vertex in its own set. 
 
Process each edge {x, y} in sorted order: 
 
 a=FIND(x) 
 b=FIND(y) 
 if a ≠ b 
  UNION(a,b) 
  Include {x, y} in MST 
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1 {0, 1} 
2 {1, 3} 
3 {0, 3} 
3 {7, 9} 
4 {0, 4} 
5 {3, 4} 
6 {3, 5} 
7 {4, 5} 
8 {6, 10} 
9 {9, 10} 
10 {1, 5} 
11 {1, 2} 

12 {2, 5} 
13 {8, 9} 
14 {2, 6} 
---------------- 
15 {7, 8} 
16 {4, 7} 
17 {5, 9} 
18 {5, 7} 
19 {6, 9} 
20 {4, 8} 
21 {2, 10} 
22 {5, 6} 

 
Time to sort,  

€ 

Θ E logV( ) , dominates computation 


