
CSE 2320 Notes 15: Minimum Spanning Trees

(Last updated 11/12/18 2:47 PM)

CLRS 21.3, 23.1-23.2

15.A. CONCEPTS

Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the
vertices. (AKA bottleneck shortest path tree)

Cut Property: Suppose S and T partition V such that

1. S ∩ T = ∅
2. S ∪ T = V
3. |S| > 0 and |T| > 0

then there is some MST that includes a minimum weight edge {s, t} with s ∈ S and t ∈ T.

Proof:

Suppose there is a partition with a minimum weight edge {s, t}.

A spanning tree without {s, t} must still have a path between s and t.

Since s ∈ S and t ∈ T, there must be at least one edge {x, y} on this path with x ∈ S and y ∈ T.

By removing {x, y} and including {s, t}, a spanning tree whose total weight is no larger is
obtained. •••

s t

S

T

x

y

Cycle Property: Suppose a given spanning tree does not include the edge {u, v}. If the weight of {u, v}
is no larger than the weight of an edge {x, y} on the unique spanning tree path between u and v, then
replacing {x, y} with {u, v} yields a spanning tree whose weight does not exceed that of the original
spanning tree.

 2
Proof: Including {u, v} in the set of chosen edges introduces a cycle, but removing {x, y} will remove
the cycle to yield a modified tree whose weight is no larger.

The proof suggests a slow approach - iteratively find and remove a maximum weight edge from some
remaining cycle:

A

B

C

D

E

F

1

2

5

8

6

7

4

15.B. PRIM’S ALGORITHM – Three versions

Prim’s algorithm applies the cut property by having S include those vertices connected by a subtree of
the eventual MST and T contains vertices that have not yet been included. A minimum weight edge
from S to T will be used to move one vertex from T to S

1. “Memoryless” – Only saves partial MST and current partition.
 (http://ranger.uta.edu/~weems/NOTES2320/primMemoryless.c)

Place any vertex x ∈ V in S.
T = V – {x}
while T ≠ ∅
 Find the minimum weight edge {s, t} over all t ∈ T and all s ∈ S. (Scan adj. list for each t)

Include {s, t} in MST.
 T = T – {t}
 S = S ∪ {t}

Since no substantial data structures are used, this takes

€

Θ EV() time.

Which edge does Prim’s algorithm select next?

0

1

2

3

4

5

6

10

9

7

8

1

2

3

4

5

6

7

8

9

10

11
12

13

14

1516

17
18

19

20

21

22

3

 3
2. Maintains T-table that provides the closest vertex in S for each vertex in T.
 (http://ranger.uta.edu/~weems/NOTES2320/primTable.c traverses adjacency lists)

Eliminates scanning all T adjacency lists in every phase, but still scans the adjacency list of the last
vertex moved from T to S.

Place any vertex x ∈ V in S.
T = V – {x}
for each t ∈ T
 Initialize T-table entry with weight of {t, x} (or ∞ if non-existent) and x as best-S-neighbor
while T ≠ ∅
 Scan T-table entries for the minimum weight edge {t, best-S-neighbor[t]}

over all t ∈ T and all s ∈ S.
Include edge {t, best-S-neighbor[t]} in MST.

 T = T – {t}
 S = S ∪ {t}
 for each vertex x in adjacency list of t
 if x ∈ T and weight of {x, t} < T-weight[x]
 T-weight[x] = weight of {x, t}
 best-S-neighbor[x] = t

What are the T-table contents before and after the next MST vertex is selected?

0

1

2

3

4

5

6

10

9

7

8

1

2

3

4

5

6

7

8

9

10

11
12

13

14

1516

17
18

19

20

21

22

3

6 14 (2)

7 16 (4)

8 20 (4)

9 17 (5)

10 21 (2)

Analysis:

Initializing the T-table takes Θ(V).
Scans of T-table entries contribute Θ(V2).
Traversals of adjacency lists contribute Θ(E).

€

Θ V2 + E#
$
% &

'
(overall worst-case.

 4
3. Replace T-table by a min-heap.
 (http://ranger.uta.edu/~weems/NOTES2320/primHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move
from T to S improves.

Place any vertex x ∈ V in S.
T = V – {x}
for each t ∈ T
 Load T-heap entry with weight (as the priority) of {t, x} (or ∞ if non-existent) and x as

best-S-neighbor
minHeapInit(T-heap) // a fixDown at each parent node in heap
while T ≠ ∅
 Use heapExtractMin /* fixDown */ to obtain T-heap entry with the minimum weight edge
 over all t ∈ T and all s ∈ S.

Include edge {t, best-S-neighbor[t]} in MST.
 T = T – {t}
 S = S ∪ {t}
 for each vertex x in adjacency list of t
 if x ∈ T and weight of {x, t} < T-weight[x]
 T-weight[x] = weight of {x, t}
 best-S-neighbor[x] = t
 minHeapChange(T-heap) // fixUp

Analysis:

 Initializing the T-heap takes Θ(V).

Total cost for heapExtractMins is Θ(V log V).
Traversals of adjacency lists and minHeapChanges contribute Θ(E log V).

€

Θ E logV()overall worst-case, since E > V.

Which version is the fastest?

 Theory Sparse

€

E =Ο V()() Dense

€

E =Ω V2#
$
% &

'
(#

$
%

&
'
(

 1.

€

Θ EV()

€

Θ V2#
$
% &

'
(

€

Θ V 3#
$
% &

'
(

 2.

€

Θ V2 + E#
$
% &

'
(

€

Θ V2#
$
% &

'
(

€

Θ V2#
$
% &

'
(

 3.

€

Θ E logV()

€

Θ V logV()

€

Θ V2 logV#
$
% &

'
(

 5
15.C. UNION-FIND TREES TO REPRESENT DISJOINT SUBSETS

Abstraction:

 Set of n elements: 0 . . n - 1

 Initially all elements are in n different subsets

 find(i) - Returns integer (“leader”) indicating which subset includes i

 i and j are in the same subset ⇔ find(i)==find(j)

 union(i,j) - Takes the set union of the subsets with leaders i and j.

 Results of previous finds are invalid after a union.

Implementation 1: (http://ranger.uta.edu/~weems/NOTES2320/uf1.c)

 Initialization:

 for (i=0; i<n; i++)
 id[i]=i;

 find(i):

 return id[i];

 unionFunc(i,j):

 for (k=0; k<n; k++)
 if (id[k]==i)
 id[k]=j;

0 1 2 3 4
0 1 2 3 4

Implementation 2: (http://ranger.uta.edu/~weems/NOTES2320/uf2.c)

 find(i):

 while (id[i]!=i)
 i=id[i];
 return i;

 unionFunc(i,j):

 id[i]=j;

0 1 2 3 4
0 1 2 3 4

Implementation 3: (http://ranger.uta.edu/~weems/NOTES2320/uf3.c)

 Initialization:

 for (i=0; i<n; i++)
 {
 id[i]=i;
 sz[i]=1;
 }

 6
 find(x):

 for (i=x;
 id[i]!=i;
 i=id[i])
 ;
 root=i;
 // path compression - make all nodes on path
 // point directly at the root
 for (i=x;
 id[i]!=i;
 j=id[i],id[i]=root,i=j)
 ;
 return root;

 unionFunc(i,j):

 if (sz[i]<sz[j])
 {
 id[i]=j;
 sz[j]+=sz[i];
 }
 else
 {
 id[j]=i;
 sz[i]+=sz[j];
 }

 Best-case (shallow tree) and worst-case (deep tree) for a sequence of unions?

15.D. KRUSKAL’S ALGORITHM – A Simple Method for MSTs Based on Union-Find Trees
(http://ranger.uta.edu/~weems/NOTES2320/kruskal.c)

Sort edges in ascending weight order.

Place each vertex in its own set.

Process each edge {x, y} in sorted order:

 a=FIND(x)
 b=FIND(y)
 if a ≠ b
 UNION(a,b)
 Include {x, y} in MST

 7

0

1

2

3

4

5

6

10

9

7

8

1

2

3

4

5

6

7

8

9

10

11
12

13

14

1516

17
18

19

20

21

22

3

1 {0, 1}
2 {1, 3}
3 {0, 3}
3 {7, 9}
4 {0, 4}
5 {3, 4}
6 {3, 5}
7 {4, 5}
8 {6, 10}
9 {9, 10}
10 {1, 5}
11 {1, 2}

12 {2, 5}
13 {8, 9}
14 {2, 6}

15 {7, 8}
16 {4, 7}
17 {5, 9}
18 {5, 7}
19 {6, 9}
20 {4, 8}
21 {2, 10}
22 {5, 6}

Time to sort,

€

Θ E logV() , dominates computation

