CSE 2320 Notes 16: Shortest Paths
(Last updated 11/17/18 10:21 AM)
CLRS 24.3,25.2

16.A. CONCEPTS
(Aside: http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2597757.2530531)
Input:

Directed graph with non-negative edge weights (stored as adj. matrix for Floyd-Warshall)
Dijkstra — source vertex

Output:

Dijkstra — tree that gives a shortest path from source to each vertex
Floyd-Warshall — shortest path between each pair of vertices (“all-pairs’) as matrix

16.B. DUKSTRA’S ALGORITHM — three versions

0 1 2 3 4 5 6 7
0(_) 00 00 00 00 00 00 00
* 1000) 2000) 15(0)
* (1) 20(1)
13(4) * 13(4)
* 142) 162) 20Q2)

15(3)
18(7) *

Similar to Prim’s MST:
S = vertices whose shortest path is known (initially just the source)

Length of path
Predecessor (vertex) on path (AKA shortest path tree)

T = vertices whose shortest path is not known
Each phase moves a T vertex to S by virtue of that vertex having the shortest path among all T vertices.
Third version may be viewed as being BFS with the FIFO queue replaced by a priority queue.

1. “Memoryless” — Only saves shortest path tree and current partition.
(http://ranger.uta.edu/~weems/NOTES2320/dijkstraMemoryless.c)

Place desired source vertex x € Vin S
T=V-{x}
x.distance =0
x.pred = (-1)
while T = J
Find the edge (s, t) over all t € T and all s € S with minimum value for s.distance + weight(s, t)
(i.e. scan adj. list for each s)
t.distance = s.distance + weight(s, t)

t.pred =s
T=T- {t}
S=S U {t}

Since no substantial data structures are used, this takes @(EV) time.

2. Maintains T-table that provides the predecessor vertex in S for each vertex t € T to give the shortest
possible path through Stot. (http://ranger.uta.edu/~weems/NOTES2320/dijkstraTable.c)

Eliminates scanning all S adjacency lists in every phase, but still scans the list of the last vertex moved
from T to S.

Place desired source vertex x € Vin S
T=V-{x}
x.distance =0
x.pred = (-1)
foreachtE T
Initialize t.distance with weight of (x, t) (or o if non-existent) and t.pred = x

while T = J

Scan T entries to find vertex t with minimum value for t.distance

T=T-{t}

S=SU {t}

for each vertex x in adjacency list of t (i.e. (t, X))

if x € T and t.distance + weight(t, x) < x.distance

x.distance = t.distance + weight(t, x)
x.pred =t

Analysis:

Initializing the T-table takes (V).

Scans of T-table entries contribute @(Vz).
Traversals of adjacency lists contribute O(E).

@(V2 +F) overall worst-case.

3. Replace T-table by a min-heap.

(http://ranger.uta.edu/~weems/NOTES2320/dijkstraHeap.cpp)

The time for updating distances and predecessors increases, but the time for selection of the next vertex
to move from T to S improves.

Place desired source vertex x € Vin S
T=V-{x}
x.distance = 0
x.pred = (-1)
foreachtE T
Initialize T-heap with weight (as the priority) of (x, t) (or o if non-existent) and t.pred = x
minHeapInit(T-heap) // a £ixDown at each parent node in heap
while T = &
Use heapExtractMin /* f£ixDown */ to obtain T-heap entry with minimum t.distance
T=T-{t}
S=S U {t}
for each vertex x in adjacency list of t (i.e. (t, X))
if x € T and t.distance + weight(t, x) < x.distance
x.distance = t.distance + weight(t, x)
x.pred =t
minHeapChange(T-heap) // £ixUp

Analysis:

Initializing the T-heap takes O(V).

Total cost for heapExtractMins is O(V log V).

Traversals of adjacency lists and minHeapChanges contribute O(E log V).
©(ElogV) overall worst-case, since E > V.

Which version is the fastest?

Theory Sparse (E =0(V)) Dense (E = Q(Vz))
1. O(EV) @(VZ) @)(V3)
2. @(V2 4 E) @(VZ) @(VZ)
3. O(ElogV) O(VlogV) @(VzlogV)

16.C. FLOYD-WARSHALL ALGORITHM

Based on adjacency matrices. Will examine three versions:
Warshall’s Algorithm — After @(V3) preprocessing, processes each path existence query in ©(1) time.

Warshall’s Algorithm with Successors (or predecessors or transitive vertices) - After @(V3)

preprocessing, provides a path in response to a path existence query in O(V) time (similar to dynamic
programming backtrace).

Floyd-Warshall Algorithm (with Successors) - After @(V3) preprocessing, provides each shortest path
in O(V) time.

Warshall’s Algorithm:

for (j=0; j<V; j++) J k__
for (i=0; i<V; i++) B
if (A[Li103D)

for (k=0; k<V; k++) i 1 O
if (A[JI1LkD)
A[il[k]=1;

j 1
Q 0 1 2 3 4
0 1

5

If zero-edge paths are useful for an application (i.e. reflexive, self-loops), the diagonal may be all ones.
Why does it work?
a. Correct in use of transitivity.

b. Is it complete?

When Paths That Can Be Detected
Before j=0 Xy
After j=0 x—=>0—y
After j=1 x—=1—y

x—=>0—=1—y
X—>]—>O—>y

After j=2 X—=2—y
x—=>0—=>2—>y
x—=>1—=2—>y
x—=>2—=>0—>y
x—=>2—=>1—y

x—=>0—>1—>2—>y
x—=>0—>2—>1—>y
x—=>1—>0—>2—>y
x—=>1—>2—-0—>y
x—=>2—>0—>1—y
x—=>2—>1—=0—>y

After j=p x — Permutation of subset of 0 ... p =y
After j=V-1 ALL PATHS

Math. Induction:

Warshall’s Algorithm with Successors
Successor Matrix

Buc-ee’s directions:

. (37 ‘<:>
100 ~(20) »37) »(200
s[100][2001=20 s[20][200]=37 s[37][200]=200
Initialize:
O——() => i
(-1 otherwise)
Warshall Matrix Update:

o o 1 3 4

@ @

for (j=0; Jj<V; j++)
for (i=0; i<Vv; i++)
if (s[1i1[J] != (-1))
for (k=0; k<V; k++)
if (hucc[i][k]==(—l) &&|succ[j][k]!=(—1))
succ[i][k] = succ[i][]];

Suppose code is removed for this graph:

@

Complete Example (http://ranger.uta.edu/~weems/NOTES2320/warshall.c) saving paths using successors:

0o 1 2 3 4 o 1 2 3 4
0 -1 -1 -1 3 -1 0o -1 -1 -1 3 -1
1 -1 -1 -1 3 4 1 -1 -1 -1 3 4
2 -1 1 -1 -1 -1 2 -1 1 -1 1 1
3 -1 -1 2 -1 -1 3 -1 2 2 2 2
4 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1

o 1 2 3 4 o 1 2 3 4
0 -1 -1 -1 3 -1 o -1 3 3 3 3
1 1 -1 -1 3 4 1 -1 3 3 3 4
2 -1 1 -1 -1 -1 2 -1 1 1 1 1
3 -1 -1 2 -1 -1 3 -1 2 2 2 2
4 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1

o 1 2 3 4 o 1 2 3 4
0 -1 -1 -1 3 -1 o -1 3 3 3 3
1 -1 -1 -1 3 4 1 -1 3 3 3 4
2 -1 1 -1 1 1 2 -1 1 1 1 1
3 -1 -1 2 -1 -1 3 -1 2 2 2 2
4 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1

Other ways to save path information:
Predecessors (warshallPred.c) Transitive/Intermediate/Column (warshallcCol.c)
@LLHI‘\ . .
5 gf’

e (D)

for (J=0;j<n;j++)
for (i=0;i<n;i++)
if (pred[i][j]!=(-1))
for (k=0;k<n;k++)
if (pred[i][k]==(-1) && pred[]j][k]!=(-1))
pred[i][k]=pred[]j][k];

Floyd-Warshall Algorithm with Successors (http://ranger.uta.edu/~weems/NOTES2320/floydWarshall.c)

After j = p has been processed, the shortest path from each x to each y that uses only vertices in0 . . . p
as intermediate vertices is recorded in matrix.

for (j=0;j<n;j++)
{
for (i=0;i<n;i++)
if (dist[i][]J]<o00)
for (k=0;k<n;k++)

if (dist[j][k]<o00)

{
newDist=dist[i][j]+dist[F]1[k];
if (newDist<dist[i][k])
{

dist[i][k]=newDist;
succ[i][k]=succ[i]l[]];

}
}
}
0 1 2 3
0 1 1
1 5 1
2 1
31 10
4
0 1 2 3 4 0 1 2 3 4
@ oo 11 12 oo 5 4 0 oo 11 12 oo 5 4
1 oo 00 52 13 oo 1 oo 00 52 13 o0
2 00 00 00 00 14 2 00 00 00 00 14
3 10 o0 00 00 10 4 3 10 20 2 0 oo 6 0

0 1 2 3 4
® oo 1 1 2 54
1 oo 00 5 1 00
2 oo 00 00 00 1 4
3 10 2 2 3 6 0
4 oo 00 00 00 00

0 1 2 3 Z___
® oo 1 1 2 2 2
1 oo 00 5 1 6 2
2 00 00 00 00 14
3 (10 2 2 3 3 0
4 oo 00 00 00 00

Note: In this example, zero-edge paths are not considered.

0 1 2 3 4
3 1 1 2 2 2
2 3 3 1 4 3
00 00 00 00 14
1 2 2 3 30
loo 00 00 00 00|
0 1 2 3 Z___
3 1 1 2 2 2
2 3 3 1 4 3
00 00 00 00 14
1 2 2 3 30
00 00 00 00 00

