CSE 2320

Name

Test 1

Spring 2006

Last 4 Digits of Student ID # _____ Multiple Choice. Write your answer to the LEFT of each problem. 3 points each

1. Suppose f(x) is a monotonically increasing function. Which of the following approximates the summation?

A.
$$\int_{m}^{n+1} f(x)dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m-1}^{n} f(x)dx \quad B. \qquad \begin{array}{l} n-1 \\ \int_{m}^{n-1} f(x)dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m-1}^{n+1} f(x)dx \\ m-1 \\ m-1$$

- 2. For which of the following sorts does the decision tree model not apply? A. Insertion B. LSD Radix Sort C. MERGE-SORT D. QUICKSORT
- 3. Which of the following sorts is not stable?
- A. Insertion B. LSD Radix Sort C. MERGE-SORT D. QUICKSORT
- 4. What is the definition of H_n ?

A.
$$\Theta(\sqrt{n})$$
 B. $\sum_{k=1}^{n} k$ C. $\ln n$ D. $\sum_{k=1}^{n} \frac{1}{k}$

5. Which of the following functions is not in $\Omega(n)$?

A. $\lg n$ B. $n \lg n$ C. $n^2 \lg n$ D. n^3

- 6. BUILD-MAX-HEAP is based on applying MAX-HEAPIFY in the following fashion:
 - A. In ascending slot number order, for each slot that is a parent.
 - B. In descending slot number order, for each slot that is a parent.
 - C. $\frac{n}{2}$ times, each time from the root of the heap.

D. n - 1 times, each time from the root of the heap.

7. Suppose that a binary search is to be performed on a table with 100 elements. The maximum number of elements that could be examined (probes) is:

8. $f(n) = n \lg n$ is in all of the following sets, except

A.
$$O(\log n)$$
 B. $\Theta(\log(n!))$ C. $\Omega(\frac{1}{n})$ D. $O(n^2)$

9. The expected time for insertion sort for *n* keys is in which set? (All *n*! input permutations are equally likely.)

A.
$$\Theta(\log n)$$
 B. $\Theta(n)$ C. $\Theta(n \log n)$ D. $\Theta(n^2)$

10. What is the value of $\sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^{k}$?

A.
$$\frac{1}{2}$$
 B. $\frac{2}{3}$ C. $\frac{3}{2}$ D. 2

- 11. Suppose that you have correctly determined some c and n_0 to prove that $f(n) \in \Omega(g(n))$. Which of the following is not necessarily true?
 - A. c may be decreased B. c may be increased C. n_0 may be increased D. $g(n) \in O(f(n))$

12. Suppose you are using the substitution method to establish a Θ bound on a recurrence T(n) and that

you already know that $T(n) \in \Omega(\lg n)$ and $T(n) \in O(n^2)$. Which of the following cannot be shown as an improvement?

A. $T(n) \in O(\lg n)$ B. $T(n) \in O(n)$ C. $T(n) \in \Omega(n^2)$ D. $T(n) \in \Omega(n^3)$

13. Which of the following is not true regarding a minheap with 1000 elements?

- A. Subscript 1 will store the maximum priority.
- B. The parent for the node with subscript 500 is stored at subscript 250.
- C. The left child for the node with subscript 200 is stored at subscript 400.
- D. The right child for the node with subscript 405 is stored at subscript 811.
- 14. Which of the following is not an application of a minheap?
 - A. Choosing the pivots for QUICKSORT.
 - B. Constructing sorted subfiles for external mergesort.
 - C. Controlling multiway merges for external mergesort.
 - D. Selecting the third smallest number from a set of one million numbers.
- 15. Which of the following will not be true regarding the decision tree for HEAPSORT for sorting n input values?

A. Every path from the root to a leaf will have $O(n \log n)$ decisions.

- B. The height of the tree is $\Omega(n \log n)$.
- C. There will be a path from the root to a leaf with $\Omega(n^2)$ decisions.

D. There will be *n*! leaves.

Long Answer

- 1. Array a contains m ints in ascending order and, similary, array b contains n ints in ascending order. Give code to merge the contents of these arrays (in ascending order) into int array c. Duplicate occurences of a value should be kept. 15 points
- 2. Use the substitution method to show that $T(n) = 3T\left(\frac{n}{3}\right) + n$ is in $\Theta(n \log n)$. 10 points
- 3. Use the recursion-tree method to show that $T(n) = 3T\left(\frac{n}{3}\right) + n$ is in $\Theta(n \log n)$. 10 points
- Show the result after PARTITION manipulates the following subarray. 10 points 4.

7	0	2	4	3	1	6	9	8	5
		0						10	

Show the maxheap after performing HEAP-EXTRACT-MAX two times. 10 points 5.

CSE 2320 Test 2 Spring 2006

Name

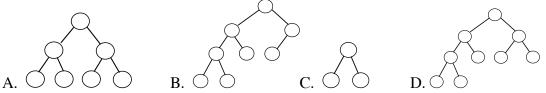
Last 4 Digits of Student ID #

Multiple Choice. Write your answer to the LEFT of each problem. 3 points each

1. Which data structure operates in first-in-first-out fashion?

- A. hashing with chaining B. hashing with open addressing C. queue D. stack
- 2. In a binary search tree, which element does not have a predecessor?
 - A. any one of the leaves B. the maximum C. the minimum D. the root
- 3. When evaluating a prefix expression, the stack contains
 - A. Both operands and operators
 - B. Both parentheses and operators
 - C. Operands only
 - D. Operators only
- 4. What is the worst-case time to perform PREDECESSOR(L, x) for a sorted, doubly-linked list with *n* nodes?

A. $\Theta(1)$ B. $\Theta(\log n)$ C. $\Theta(n)$ D. $\Theta(n \log n)$


5. What is the worst-case time to perform PREDECESSOR(L, x) for an unsorted, singly-linked list with *n* nodes?

A. $\Theta(1)$ B. $\Theta(\log n)$ C. $\Theta(n)$ D. $\Theta(n \log n)$

- Which of the following would not be used in implementing rat-in-a-maze in a depth-first fashion?
 A. Circular queue B. Recursion C. Stack D. 2-d array
- 7. What is the worst-case time to find the successor of a key in a red-black tree storing n keys? Assume that parent pointers are available.

A. $\Theta(1)$ B. $\Theta(\log n)$ C. $\Theta(n)$ D. $\Theta(n \log n)$

- 8. If POP is implemented as return stack[--SP], then PUSH of element X is implemented as:
 A. return stack[SP++]
 B. stack[SP++] = X
 C. stack[SP--] = X
 D. stack[++SP] = X
- 9. Which of the following binary trees has *exactly* one legal coloring as a red-black tree?

- 10. Circular linked lists are occasionally useful because
 - A. some operations may be done in constant time.
 - B. they are an alternative to red-black trees.
 - C. they are useful for implementing circular queues.
 - D. they avoid mallocs.
- 11. Which binary tree traversal corresponds to the following recursive code?

void traverse(nodept x)

```
{
if (x==NULL)
  return;
traverse(x->left);
traverse(x->right);
// process x here
}
```

A. inorder B. postorder C. preorder D. search for key x

12. The number of potential probe sequences when using double hashing with a table with m entries (m is prime) is:

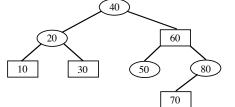
A. $O(\log m)$ B. *m* C. m(m-1) D. *m*!

- 13. Assuming that each key stored in a double hash table with $\alpha = 0.8$ (without deletions), the upper bound on the expected number of probes for unsuccessful search is: A. 1.2 B. 2 C. 5 D. 10
- 14. The expected number of probes for a successful search in hashing by chaining with α as the load factor is:

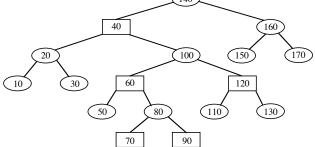
A. $\frac{\alpha}{2}$ B. $\frac{2}{3}\alpha$ C. $\frac{3}{2}\alpha$ D. 2α

- 15. Which of the following is not an issue in selecting a data structure for a dictionary?
 - A. need for ordered retrieval
 - B. need to delete keys
 - C. number of keys to be stored
 - D. size of the set of potential keys

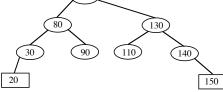
Long Answer

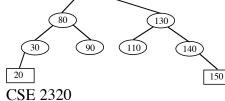

1. Consider the following hash table whose keys were stored by linear probing using

- h(key, i) = (key + i) % 17.
 - 0 -1
 - 1 800
 - 2 -1
 - 3 700
 - 4 -1
 - 5 600 6 **-**1
 - 6 –1 7 500
 - 7 500 8 -1
 - 8 -1 9 400
 - 10 **-**1
 - 10 111 - 1
 - 12 301
 - 12 JU 13 –1
 - 14 201
 - 15 -1
 - 10 116 101
 - a. Suppose 1000 is to be stored (using linear probing). Which slot will be used? (3 points)
 - b. Suppose 1001 is to be stored (using linear probing) *after* 1000 has been stored. Which slot will be used? (4 points)
- 2. Consider the following hash table whose keys were stored by double hashing using


 $h_1(\text{key}) = \text{key }\% \ 17 \text{ and } h_2(\text{key}) = 1 + (\text{key }\% \ 16).$

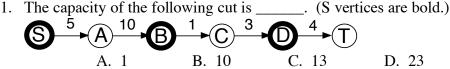
- 0 -1
- 1 800
- 2 -1
- 3 -1
- 4 701 5 **-**1
- 5 **-**1 6 601
- 7 **–**1
- , <u>1</u> 8 501
- 9 -1
- 10 401
- 11 -1
- 12 301
- 13 -1
- 14 201
- 15 -1
- 16 101
- a. Suppose 1000 is to be inserted (using double hashing). Which slot will be used? (4 points)


- b. Suppose 1001 is to be inserted (using double hashing) *after* 1000 has been stored. Which slot will be used? (4 points)
- 3. Insert 35 into the given red-black tree. Be sure to indicate the cases that you used. (10 points)


4. Insert 85 into the following red-black tree. Be sure to indicate the case(s) that you used. 10 points $\sqrt{140}$

5. Delete 30 from the following red-black tree. Be sure to indicate the case(s) that you used. 10 points $\sqrt{100}$

6. Delete 80 from the following red-black tree. Be sure to indicate the case(s) that you used. 10 points $\sqrt{100}$


Name _____

Test 3

Spring 2006

Last 4 Digits of Student ID # _____

Multiple Choice. Write the letter of your answer to the LEFT of each problem. 2 points each

- 2. The fastest method for finding the diameter of a tree is to:
 - A. Use breadth-first search.
 - B. Use Dijkstra's algorithm.
 - C. Use the Floyd-Warshall algorithm.
 - D. Use the Ford-Fulkerson algorithm.
- 3. Suppose the compressed adjacency list representation is used for an undirected graph with n vertices and m edges. Assuming there are no self-loops, the number of entries in the two tables are:
 - A. n for both
 - B. *m* for both
 - C. n + 1 and m

D. n + 1 and 2m

- 4. Which of the following is a longest common subsequence for 0 1 0 2 1 2 and 0 0 1 1 2 2?
 A. 0 0 1 1
 B. 0 0 1 1 2
 C. 0 0 1 2
 D. 0 1 2 0
- 5. When a graph is sparse, the best way to find a shortest path between every pair of vertices is: A. Dijkstra's algorithm using heap
 - B. Dijkstra's algorithm using T-table
 - C. Floyd-Warshall algorithm
 - D. Warshall's algorithm
- 6. The worst-case time for Prim's algorithm implemented with a T-table is:

A.
$$\Theta(V + E)$$
 B. $\Theta(V^2 + E)$ C. $\theta(V \lg V)$ D. $\theta(V \lg E)$

- 7. Which of the following is true about KMP string search?
 - A. Once the fail links have been constructed, the pattern is no longer needed.
 - B. The fail links are constructed based on the pattern and may be applied to different texts.
 - C. The fail links are constructed based on the text and may be applied to different patterns.
 - D. The fail links are constructed for a particular pattern and a particular text.
- Suppose that there is exactly one path from vertex 8 to vertex 10 in a directed graph:
 8 → 7 → 3 → 5 → 10. During the scan of which column will Warshall's algorithm record the presence of this path?
 - A. 3 B. 5 C. 7 D. 8
- 9. Which statement is not correct about depth-first search on a directed graph?
 - A. Exploring an edge whose head is colored black will cause the edge to be a back edge.
 - B. Exploring an edge whose head is colored gray will cause the edge to be a back edge.
 - C. Exploring an edge whose head is colored white will cause the edge to be a tree edge.
 - D. The run time is $\Theta(m + n)$, where m is the number of edges and n is the number of vertices.
- 10. Which of the following is not true regarding the Edmonds-Karp variant.
 - A. An augmenting path is found using breadth-first search.
 - B. An augmenting path may be used several times.
 - C. An edge may go back-and-forth between being saturated and unsaturated.
 - D. It solves the network flow problem in polynomial time.
- 11. Suppose that a directed graph has a path from vertex X to vertex Y, but no path from vertex Y to vertex X. The relationship between the finish times is:
 - A. finish(X) < finish(Y) B. finish(X) > finish(Y)
 - C. finish(X) = finish(Y) D. could be either A. or B.
- 12. A fail link of -1 requires the KMP matcher to take what action?
 - A. Give up the search entirely, since the pattern cannot appear within the text.
 - B. Move both pointers up one symbol.
 - C. Move the pattern pointer to the next pattern symbol and set the text pointer to 0.
 - D. Move the text pointer to the next text symbol and set the pattern pointer to 0.
- 13. Suppose that a directed graph is to be stored and then queries for the presence of various edges will be submitted. Which of the following worst-case time bounds for testing whether one edge is present is **incorrect**? (Vertices are conveniently labeled by numbers $0, 1, \ldots, V 1$.)
 - A. Adjacency lists (ordered): $\Theta(\log V)$
 - B. Adjacency lists (unordered): $\Theta(V)$
 - C. Adjacency matrix: $\Theta(1)$
 - D. Compressed adjacency lists (ordered): $\Theta(\log V)$
- 14. Suppose that an instance of bipartite matching has 5 vertices in the left column, 15 vertices in the right column, and 10 edges. The number of edges in the corresponding instance of network flow is: A. 25

- B. 30
- C. 55
- D. 150
- 15. Which of the following is solved heuristically by a greedy method?
 - A. Fractional knapsack
 - B. Finding the shortest paths from a designated source vertex in a sparse graph.
 - C. Minimum spanning tree
 - D. 0/1 knapsack
- 16. Prim's algorithm, when implemented with a heap, is most suitable for:
 - A. Finding the minimum spanning tree of a dense graph.
 - B. Finding the minimum spanning tree of a sparse graph.
 - C. Finding the shortest paths from a designated source vertex in a dense graph.
 - D. Finding the shortest paths from a designated source vertex in a sparse graph.
- 17. What is the purpose of the first depth-first search when finding strongly connected components?
 - A. To assure that two vertices that are in the same cycle will be output in the same component
 - B. To assure that two vertices with no paths between them are not output in the same component
 - C. To assure that two vertices, X and Y, with paths from X to Y but not from Y to X, are output in different components.
 - D. To make sure that the input graph has no cycles.
- 18. Which of the following dynamic programming problems maximizes its cost function?
 - A. Optimal Matrix Multiplication
 - **B.** Parking Permits
 - C. Shuttle-to-Airport
 - D. Weighted Interval Scheduling
- 19. Suppose that the input for Huffman code tree construction is 10 symbols, each with probability 0.1 for occurring in a file to be compressed. What will be the expected bits per symbol when using the constructed tree?

A. 3 B. 3.2 C. 3.4 D. 4

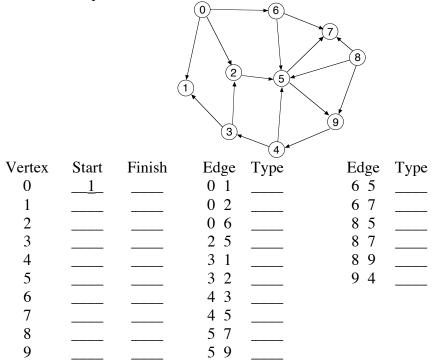
- 20. Before searching for a minimum cut in a network, it is useful to do the following:
 - A. Determine the type of each edge using depth-first search.
 - B. Find and record augmenting paths until none remains.
 - C. Find one augmenting path.
 - D. Perform a breadth-first search on the input network.

Long Answer

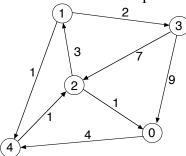
1. Complete the following instance of the optimal matrix multiplication ordering problem, including the tree showing the optimal ordering. 10 points

1	p[0]=5	p[1]=4	p[2]	=3	p[3]=4	p[4]=5	p[5]=6
	1	2		3	4	1	ļ	5	
1	0 0	2 60 1	120	2	195	2	???	?	
2		0 0	48	2	120	2	222	2	
3			0	0	60	3	150	4	
4					0	0	120	4	
5			0 points				0	0	

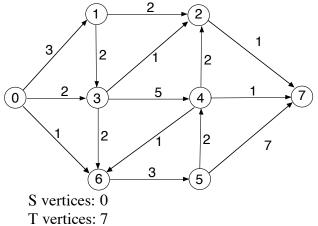
2. Fill in the KMP failure links. 10 points.


	0	1	2	3	4	5	6	7	8	9
1:										
pattern:	a	b	c	d	a	b	c	a	b	а

2:


3. Solve the following instance of the parking permit problem by indicating the range of days covered for each of the permits used. 10 points.

Permit #	Duration	<u>Cost</u>	-
0	1	5	
1	3	7	
2	7	10	
Permits are	e needed to c	over the	e following days:


- Perform depth-first search on the following graph, including start/finish times and edge types (T=tree, B=back, C=cross, F=forward.) Assume that the adjacency lists are <u>ordered</u>. Write your answers in the tables below. 10 points

5. Demonstrate the Floyd-Warshall algorithm, <u>with successors</u>, for the following graph. The paths indicated in the final matrix must have <u>at least one</u> edge. You are not required to show the intermediate matrices. 10 points.

6. Give augmenting paths for determining a maximum flow and give a minimum cut for the following network. 0 is the source and 7 is the sink. 10 points.

Augmenting Paths and Contribution to Flow: