
CSE 4351  Notes 5:  Interconnection Networks and Routing

Two Major Approaches to Processor/Memory Interconnects:
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Graph-theoretic Properties:

Bisection width = minimum number of "wires" that must be removed to get two "halves"

Diameter = maximum distance between any pair of processors

Bounded degree = all networks in the class have vertex-degree bounded by a constant

Symmetry = number of automorphisms, number of vertex equivalence classes (vecs)

Rules of Thumb:  High bisection width and low diameter are good.  Bounded degree networks are easier to build.
High symmetry - simpler code, complicated to build

Linear array

P0 P1 P2 P3 P4

Bisection width = 1

Diameter = N - 1

Automorphisms = 2, vecs = ceil(N/2)

Convenient for VLSI signal processing and bit-level integer multiplication.  The convolution of two polynomials h(x) = 
f(x)g(x) of f(x) = a0 + a1x + a2x2 + . . . + an-1xn-1 and g(x) = b0 + b1x + b2x2 + . . . + bn-1xn-1  may be computed on a 2n-1 
node linear array by inputting an-1, an-2, an-3 . . . a0 into the left end at the odd numbered steps and b0, b1, b2 . . . bn-1 at the 
odd numbered steps.  When an a and a b value arrive at a node, the values are multiplied and added to the value which will be 
output as a coefficient for h(x)
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Trace for n = 4:

p0 p1 p2 p3 p4 p5 p6

----------------------------------------------------------------------------------------------------------------------------
a0 • a1 • a2 • a3

0 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
1 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
2 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
3 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
4 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
5 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
6 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
7 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
8 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
9 b0 • b1 • b2 • b3
----------------------------------------------------------------------------------------------------------------------------

a0 • a1 • a2 • a3
10 b0 • b1 • b2 • b3

INCREDIBLY EASY TO PERFORM ROUTING!!!

Ring - symmetric version of linear array.  To avoid long wraparound connection, the following arrangement may be used:

P0 P1 P2 P3 P4P5P6P7

Bisection width = 2, Diameter = N/2, Automorphisms = 2N, vecs = 1

Mesh
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.  .  .

k

N

2-d most common, can have higher dimension

Bisection width = min(k,N) if max(k, N) is even and min(k, N) + 1, otherwise.  Diameter = k + N - 2

Bisection width for higher dimension array:

Suppose dimensions are 2 ≤ N1 ≤ N2 ≤ . . . ≤ Nr.

If Nr is even, then bisection width is N1 • N2 • . . . • Nr-1

If Nr is odd, then bisection width is N1 • N2 • . . . • Nr-1 + bisection width of array N1 × N2 × . . . × Nr-1

Automorphisms = 8 and vecs ≈ N2/8 when N = k

ROUTING IS MORE DIFFICULT THAN LINEAR ARRAY.  BOTTLENECKS AROUND CENTER OF MESH.

Sorting can be used to handle routing (along with "perfect matching" in graphs).  Can also use randomized approaches such
as Valiant-Brebner routing.

2-d Torus - adds wrap-around connections between P(i,N-1) and P(i,0), also P(k-1,j) and P(0,j).  
N-by-N torus (N > 4) has bisection width = if N even then 2N else 2(N+1),
diameter = if N even then N else N-1, 8N2 automorphisms, 1 vec

Complete Binary Tree
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Bisection Width = 1  Diameter = 2*lg(N+1) - 2  Automorphisms = 22h-1, vecs = h + 1 (h=height, which is 3 in example)

Often the internal nodes are used just for  communication

Leaf selection - number leaves from 0 to 2k - 1, can switch path to leaf by sending MSB first followed by decreasing 
significance bits.

Butterfly

2k rows and k+1 columns

Processors in each row are connected as a linear array

Bisection width = 2k (just remove highest dimension edges)

Automorphisms = 22k+1- 1    vecs = (k + 1)/2

Processor P[i,j] is also connected to processor in next column via complementing the (j+1)-st most significant bit

0 1 2 3

000

001

010

011

100

101

110

111

Fat tree - generalization of the butterfly that has been used in several commercial systems.

Each non-root node has two parents, but each non-leaf node has degree children.

The depth of the fat tree indicates the number of levels past the root level (level 0).

Level i (0 ≤ i ≤ depth) has vertices labeled (i, j, k) where 0 ≤ j < degreei and 0 ≤ k < 2depth-i.
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Non-leaf vertex (i, j, k), i < depth has children (i + 1, j•degree + p, k/2) where 0 ≤ p < degree.

Example:  depth = 3 and degree = 2:

0

1

2

0,0 0,1 0,2 0,3

0,0 0,1 1,0 1,1

0,0 1,0 2,0 3,0

Example:  depth = 4 and degree = 2:

0

1

2

3

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3

0,0 0,1 1,0 1,1 2,0 2,1 3,0 3,1

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

Hypercube 

Squashes together each row of butterfly, giving 2k processors

Each processor is connected to k others - by complementing exactly one bit

0 1
0 1

2 31-d
2-d

0 1
2 3

4 5

6 73-d
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0 1

2 3

4 5

6 7

12 13

1514

10
11
98

4-d
Note:  Cube connection results from replacing each vertex by a ring of k vertices

Bisection width = 2k - 1  Automorphisms = k!2k   vecs = 1

Derivation of automorphisms:

1.  Any one of the 2k vertices may be mapped to vertex 0.
2.   Any dimension is equivalent to any other, since there are k dimensions there are k! permutations.

Hamiltonian cycle of processors - use reflected Gray code (address = i xor  (i >>1) trick)

1-bit:
0
1

2-bits:
0 0
0 1
----
1 1
1 0

3-bits:
0 0 0
0 0 1
0 1 1
0 1 0
--------
1 1 0
1 1 1
1 0 1
1 0 0

4-bits:
0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
----------
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0

Benes Network:  A multi-stage switching network variation of the butterfly/hypercube with (2k+1)2k binary switches.  We look at this 
network to get an initial understanding of static (permutation) routing and then examine the same concepts for hypercubes.
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Forward
Butterfly

Backward
Butterfly

Shared 
Nodes

MSB
Complement

MSB
Complement

LSB Complements

Commonly written as

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Switches can be set to give an "edge-disjoint" path for any permutation.  For permutation 

( )0 1 2 3 4 5 6 7

5 3 4 7 0 1 2 6
we get:

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

The existence of a switch setting for each permutation can be proven by viewing the Benes network as a recursive structure:
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UPPER
NETWORK

LOWER
NETWORK

.

.

.

.

.

.

.

.

.

.

.

.

If we can successfully route a n-permutation problem to the upper and lower networks, we then have two n/2-permutation problems.  
2-permutations are trivially routed.  n-permutation problems are always solvable based on Hall’s Matching Theorem:

A 2N-node bipartite graph G=(U,V,E) has a perfect matching if and only if for all subsets S ⊆ U, |N(S)| > |S|, where N(S) denotes the 
nodes in V that are adjacent to a node in S.

Corollary:  If all vertices in a bipartite graph are incident on k edges, then there are k disjoint perfect matchings.  (The set of k 
matchings may not be unique.  The number of perfect matchings is known as the permanent of the binary adjacency matrix for the 
graph.)

Translation:

bipartite:  two-colorable
U:  Nodes of color 1
V:  Nodes of color 2
Perfect matching:  Set of edges that will include all vertices, but no vertex is on two of the edges
Condition will be satisfied by routing graph, since each node is incident to two edges.

All "outside" switches have two packets to be routed to the other side.

Example: ( )0 1 2 3 4 5 6 7

5 3 4 7 0 1 2 6

0/1

2/3

4/5

6/7

0/1

2/3

4/5

6/7

0

5

1

3

2

4

3

7

4

0

5

1

6

2

7 6
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This gives  (dark lines in graph correspond to using upper network)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

4

3

6

1

5

2

7

0

5

2

7

1

4

3

6

and an upper routing problem of ( )0 4 3 6

5 0 7 2
and a lower routing problem of ( )1 5 2 7

3 1 4 6

 
The matching problems for these are:

0/4

3/6

0/5

2/7

1/5

2/7

1/4

3/6

0 5

4 0

3

6 2

1

3

5 1

2

4

7 6

7

The recursive structure views these two problems as separate, but there is no difficulty in solving them as a single bipartite matching 
problem.  We now have:

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

4

3

6

1

5

2

7

0

5

2

7

1

4

3

6

0

3

4

6

1

2

5

7

5

7

0

2

4

3

1

6

The remaining four subnetworks (single switches) are trivial.
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FINDING A MAXIMUM BIPARTITE MATCHING

Even though trial-and-error is usually sufficient for small problems, the notion of an alternating path facilitates the task.  Hopcroft and 
Karp developed an extremely efficient depth-first-search algorithm of this concept that runs in O(|E| √(|V|)) time, but it is not suitable 
for "hand tracing".  (Even more remarkably, Micali and Vazirani obtained the same bound for matching in general graphs).

The algorithm is based on incrementally increasing the size of the matching.  The algorithm starts by using an initial deficient 
matching (a single edge is fine or we may greedily attempt to insert each edge in the matching without backtracking by removing a 
vertex).  We then search for a path with the following properties:

1.  The starting and terminating vertices are different and are not included in the previous matching.
2.  The path alternates between k+1 edges that are not in the matching and k edges that are in the matching, i.e.

. . .

= Edge not in previous matching

= Edge included in previous matching

3.  The new matching is obtained by removing the edges from the previous matching that are on the alternating path and then 
including the alternating path edges that were not in the previous matching.

NOTE:  Often a simple alternating path is just a single edge between two vertices not in the previous matching!

Sequential code and sample input files are in files bipartiteMatch*.

Example:

0/1

2/3

4/5

6/7

0/1

2/3

4/5

6/7

0

5

1

3

2

4

3

7

4

0

5

1

6

2

7 6     

0/1

2/3

4/5

6/7

0/1

2/3

4/5

6/7

0

5

1

3

2

4

3

7

4

0

5

1

6

2

7 6     

0/1

2/3

4/5

6/7

0/1

2/3

4/5

6/7

0

5

1

3

2

4

3

7

4

0

5

1

6

2

7 6     

0/1

2/3

4/5

6/7

0/1

2/3

4/5

6/7

0

5

1

3

2

4

3

7

4

0

5

1

6

2

7 6     
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0/1

2/3

4/5

6/7

0/1

2/3

4/5

6/7

0

5

1

3

2

4

3

7

4

0

5

1

6

2

7 6     

0/1

2/3

4/5

6/7

0/1

2/3

4/5

6/7

0

5

1

3

2

4

3

7

4

0

5

1

6

2

7 6     

0/1

2/3

4/5

6/7

0/1

2/3

4/5

6/7

0

5

1

3

2

4

3

7

4

0

5

1

6

2

7 6

The same ideas apply to a butterfly/hypercube, but will go both ways on an edge at different times:

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Pairs of processors act as switches in each layer.  First (leftmost) level:  (0,4),(1,5),(2,6),(3,7)  Second layer:  (0,2),(1,3),(4,6),(5,7)
Interpretation:
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Upper

Lower

Lower

Upper

Upper

Upper

Lower

Lower

Left of Center Column Right of Center Column

Permutation routing is again based on perfect matching.  In each pair, one processor takes upper, the other takes lower.  Gives a 
vertex-disjoint path.

Example: Route ( )0 1 2 3 4 5 6 7

3 7 6 0 2 1 4 5

Routing Graph:

0/4

1/5

2/6

3/7

0/4

1/5

2/6

3/7

0

3

1

7

2 6

3

0

4

2

5 1

6

4

7

5

Paths:
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0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

5

2

3

4

1

6

7

0

1

6

3

4

5

2

7

Upper routing problem is: ( )0 5 2 3

3 1 6 0
. Lower routing problem is: ( )4 1 6 7

2 7 4 5
.

Routing graphs:

0/2

3/5

0/6

1/3

0

3

5 1

2 6

3

0

4/6

1/7

2/4

5/7

4 2

1 7

6 4

7 5

Corresponding paths:
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0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

0

1 1

2

2

3 3

4 4

6 6

7 7

5 5

0

0

11

2

2

34

4

4

5

5

6

6

7

7

Final paths are trivial:
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0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

0 0

1 1 1

2

2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

0

0

0

111

2

22

33

3

4

44

5

55

6

66

7

77

Static Routing for Meshes

Given an arbitrary permutation for packets on a 2-d mesh, perfect matching (as in hypercubic networks) may be used to achieve a 

static routing.  The algorithm will give a 3N - 3 step strategy for routing a given permutation on a N x N mesh.  The result can be 

generalized to multidimensional meshes.  The algorithm has three phases, only the first phase must be precomputed:

Phase 1:  Permute the packets within each column so that  at most one packet in each row is destined for each column via 
perfect matching

Phase 2:  Route each packet within its row to the correct column

Phase 3:  Route each packet within its column to its final destination

Example:

Packets are initially located as follows, with destination indicated:

0 1 2

0

1

2

2,1 1,2 0,2

2,2 0,0 1,0

0,1 2,0 1,1

The routing graph has one edge per packet, based on the starting column and the destination column for each:
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Start Destination

0

1

2

0

1

2

2,1

1,2

0,2

2,2

0,0

1,0

0,1
2,0

1,1

Three perfect matchings are then derived.  All packets in the ith matching are routed to row i in the first phase.

Start Destination

0

1

2

0

1

2

2,1

1,2

1,0

Start Destination

0

1

2

0

1

2
0,2

0,0

0,1

Start Destination

0

1

2

0

1

2

2,2

2,0

1,1

Match 1 Match 2 Match 3

Thus, phase 1 will give:

0 1 2

0

1

2

2,1 1,01,2

0,00,1 0,2

2,0 1,12,2

Phase 2 routes within rows according to column destinations:

0 1 2

0

1

2

1,0 2,1 1,2

0,0 0,1 0,2

2,0 1,1 2,2

Phase 3 routes within columns according to row destinations:
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0 1 2

0

1

2

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

Greedy ("Shortest Path") Routing

Routing decisions are made on-the-fly in a simple way

Linear Array - Completely solved by greedy approach

Special case - each processor is the destination for a single packet, but a processor may be the source for multiple
packets

Inverse problem - each processor is the source for a single packet, but a processor may be the destination for
multiple packets

Modification - always choose the packet that has the farthest to go, still takes no more than n - 1 steps

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

245 013

24 15 3 0

2 14 5 03

12 04 35

01 2 34 5

0 1 2 3 4 5

0 1 2 3 4 5
Mesh (n-by-n)

Algorithm:  Linear routing in x-dimension, followed by linear routing in y-dimension:
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Queueing:  For a given edge, choose the packet which must go the farthest in that dimension

Routing for y-dimension takes n - 1 steps using result from linear arrays.

The linear array result also applies when each node starts with one packet, but
a node may receive multiple packets - like in the x-dimension

Takes 2n - 2 steps, but may queue almost 2n/3 packets, consider the situation:

n

n

Each of the  three portions of the first two rows has about n/3 elements destined for column n/3.  At mesh 
node (2,n/3),  for each element that leaves (out the bottom) two additional elements will be queued

Hypercube

Algorithm:  Processor scans low-order to high-order comparing processor address and the destination address
 until the a mismatch  is found, then send out that edge

Example:  Suppose processors with addresses of form 0...0, <x> send to processors with addresses of form
<y>, 0...0 (0...0, <x>, and <y> each have k bits).

PROBLEM:  All √N packets must traverse processor 0...0,0...0

General solution to congestion:  Valiant-Brebner Routing

1.  Packet is greedily routed to a random intermediate destination.

2.  Packet is greedily routed from intermediate destination to the real destination.

Switching Techniques

Circuit switching:  Physical switches are set to reserve entire path for full bandwidth.

Store-and-forward (packet switching):  A packet of a message is forwarded to next processor on path only after the entire 
packet has been received.  Path is not established up front.

Virtual cut-through:  If next router along path has input buffer space, then the flits in a packet will be pipelined.  Otherwise, 
there is sufficient space to store an entire packet.

Wormhole routing:  Uses pipelining, but has smaller buffers and uses flow-control to stall the flits of a packet, possibly 
among several routers.  Prone to deadlock, so physical channels are divided into virtual channels that allow sufficient 
progress as long as cycle(s) of virtual channels are avoided.

Broadcasting Models:

One-to-all (ordinary broadcast) /All-to-all (‘‘gossiping’’) / Personalized (individualized messages)

Single-port/Multi-port - degree of communication concurrency for a processor

Mono-directional/Bi-directional - meaning of an edge



19
Example:  One-to-all broadcast on k-dimensional hypercube with node 0 as root.

Diameter is lower bound on number of rounds.

rootWork=0;
for (receiveDim=0; receiveDim < k; receiveDim++)
{

if bit receiveDim of rank == 1
Set bit receiveDim of rootWork

if rootWork==rank
break;

}
for (i=0; i < k; i++)

if i ≥ receiveDim
if bit i of processorRank is 0

Send data value to node rank + 2i

else
Receive data value from node rank - 2i

Easily adapted for arbitrary processor to be the root.

Example:  All-to-all broadcast on k-dimensional hypercube using all links simultaneously

Lower bounds:  

1.  Diameter of hypercube = k

2.  In a given round, a processor may receive up to k messages.  Each processor needs to receive 2k - 1 messages, so
at least ceiling((2k - 1)/k )rounds are needed.

Bound 2 is more significant

k ceiling((2k - 1)/k )

2 2
3 3
4 4
5 7
6 11
7 19
8 32
9 57

10 103
11 187
12 342

Algorithm:  Design a restricted one-to-all broadcast tree that can be easily replicated with any processor as the root of the 
broadcast.  The algorithm will use no more than one link in each dimension in each round of communication..

First, we construct a graph that uses the necklace notion to group together processors whose addresses are the same under 
bitwise rotation.  Two necklaces will be connected by an edge if some processor for one necklace is adjacent to some 
processor for the other necklace.  For example, we use k = 6:
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000000/1

000001/6

000011/6 000101/6

000111/6

001001/3

001011/6001101/6

001111/6

010101/2

010111/6 011011/3

011111/6

111111/1

A broadcast tree is designed for the value at processor 000000 by using depth-first search (breadth-first is also fine) to 
navigate among  necklaces with k processors:

000000/1

000001/6

000011/6 000101/6

000111/6

001001/3

001011/6001101/6

001111/6

010101/2

010111/6 011011/3

011111/6

111111/1

1

2

3

4

5
6

7

8
9

These 9 edges give the first 9 rounds of communication.  The underlined bits emphasize that only one link for each 
dimension is used in each round.
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Round 1: 000000 → 000001
000000 → 000010
000000 → 000100
000000 → 001000
000000 → 010000
000000 → 100000

Round 2: 000001 → 000011
000010 → 000110
000100 → 001100
001000 → 011000
010000 → 110000
100000 → 100001

Round 3: 000011 → 000111
000110 → 001110
001100 → 011100
011000 → 111000
110000 → 110001
100001 → 100011

Round 4: 000111 → 010111
001110 → 101110
011100 → 011101
111000 → 111010
110001 → 110101
100011 → 101011

Round 5: 010111 → 011111
101110 → 111110
011101 → 111101
111010 → 111011
110101 → 110111
101011 → 101111

Round 6: 011111 → 001111
111110 → 011110
111101 → 111100
111011 → 111001
110111 → 110011
101111 → 100111

Round 7: 001111 → 001101
011110 → 011010
111100 → 110100
111001 → 101001
110011 → 010011
100111 → 100110

Round 8: 001101 → 000101
011010 → 001010
110100 → 010100
101001 → 101000
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010011 → 010001
100110 → 100010

Round 9: 000101 → 100101
001010 → 001011
010100 → 010110
101000 → 101100
010001 → 011001
100010 → 110010

In rounds 10 and 11, the algorithm ‘‘cleans up’’  for the necklaces with < k processors:

Round 10: 001011 → 001001 Necklace 001011 to necklace 001001
010110 → 010010
101100 → 100100

001011 → 011011 Necklace 001011 to necklace 011011
010110 → 110110
101100 → 101101

Round 11: 000101 →  010101 Necklace 000101 to necklace 010101
001010 → 101010

111110 → 111111 Necklace 011111 to necklace 111111

Several details that guarantee the success of the clean-up rounds have been omitted.  These rounds are only needed when k is 
not prime.  There is much flexibility in generating a solution, i.e. there are many alternate schemes.

The last detail is to replicate for broadcasts for other processors besides 000000.  This is easily done by taking the bits in the 
address of the broadcasting processor and exclusive or’ing this address onto the sending and receiving address for each of the 
transmissions in all rounds.

The end result is that all links will be busy in every round except perhaps the last one.

Sorting Techniques:

Odd-Even Transposition Sort 

Uses n/2 rounds (each with two transposition steps)  to sort n values on linear array.

1 ↔ 6  7 ↔ 5  3 ↔ 4  2 ↔ 0
1  6 ↔ 5  7 ↔ 3  4 ↔ 0  2

1 ↔ 5  6 ↔ 3  7 ↔ 0  4 ↔ 2
1  5 ↔ 3  6 ↔ 0  7 ↔ 2  4

1 ↔ 3  5 ↔ 0  6 ↔ 2  7 ↔ 4
1  3 ↔ 0  5 ↔ 2  6 ↔ 4  7

1 ↔ 0  3 ↔ 2  5 ↔ 4  6 ↔ 7
0  1 ↔ 2  3 ↔ 4  5 ↔ 6  7

0  1  2  3  4  5  6  7
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Mesh Sorting

Unlike other topologies, there is no single "obvious" desirable way to place an ordered sequence onto a mesh for 2 dimensions, much 

less higher dimensions.  It is usually taken that given a good way to obtain a particular arrangement, it is not a problem to permute the 

arrangement (based on static routing for meshes, discussed earlier).  The following "shearsort" algorithm for 2-d meshes is practical 

(uses odd-even transposition in rows or columns), but not optimal (misses by a logarithmic factor).  The algorithm takes N (2log N +1) 

steps where the mesh is N x N.  The output is in "snakelike" ordering for rows.

Phases 1, 3, 5, ... , 2log(N) + 1 sort all rows (in Ο(N) parallel time for each phase)

Odd rows are sorted so that smaller numbers are at the left.  Even rows are sorted so that smaller numbers are at the right.

Phases 2, 4, 6, ..., 2log(N)  sort all columns (in Ο(N) parallel time for each phase)

Columns are sorted with smaller numbers at the top

Example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

2 8 10 12

151416

3 7 9 13

461115

2

3

15

16

7

8

11

14

5

6

9

10

1

4

12

13

1 2 5 7

3468

9 11 12 15

10131416

1

8

9

16

2

6

11

14

4

5

12

13

3

7

10

15

1 2 3 4

5678

9 10 11 12

13141516

Why does it work?  The algorithm is oblivious (since odd-even transpose is also oblivious.).  By the 0-1 sorting lemma, if an oblivious 

algorithm will correctly sort any input sequence with 0s and 1s, then the algorithm will sort any sequence correctly.  (The proof of the 

0-1 sorting lemma shows that if an oblivious sort fails on some sequence, then there exists a sequence of 0s and 1s that will also make 

the algorithm fail.)

Problems:

1. Route the following permutation on a Benes network and a hypercube (e.g. butterfly):
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( )0 1 2 3 4 5 6 7

4 5 6 7 0 1 2 3

2. Use Gray codes to show that a 64-node hypercube is isomorphic to a 4 x 4 x 4 torus.

3. Show how to achieve the following mesh permutation using perfect matching and linear array sorting.

3,2 3,3 2,2 2,1

3,1 4,2 1,1 1,4

4,4 1,3 2,3 1,2

4,3 2,4 3,4 4,1

4. Derive an all-to-all broadcast scheme for a 4-d hypercube similar to the one used for 6-d hypercubes.

5. How many automorphisms are there for a complete binary tree with h = 4?

6. How many vertex equivalence classes does a 4x5 torus have?  A 4x5 mesh?

7. How many automorphisms does a 5-node ring have?

8. For purposes of this exercise only, let us define a class of networks to be scalable if a larger network in that class may be 
constructed from smaller network(s) of that class by only including additional vertices and edges.  In particular, the drastic measures 
of removing edges or vertices are prohibited.  Indicate which network classes are scalable and which are not.

9. Consider an r-dimension array with N = N1 = Nr and N is odd.  What is the bisection width?

10. Draw the fat tree with depth = 2 and degree = 3.

1. Route the following permutation on a Benes network and a hypercube (e.g. butterfly):

( )0 1 2 3 4 5 6 7

4 5 6 7 0 1 2 3

0
1

2

3

4

5

6
7

0
1

2

3

4

5

6

7
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0/1

2/3

4/5

6/7

0/1

2/3

4/5

6/7

0

4

1

5

2

6

3

7

4

0

5

1

6

2

7

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

4

2

6

3

7

5

0

4

3

2

6

7

1

5

0/4

3/7

1/5

2/6

0/4

3/7

1/5

2/6

0 4

1 5

2 6

3 7

4 0

5 1

6 2

7 3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

4

2

6

3

7

5

0

4

3

2

6

7

1

5

0 4

7 3

4 0

3 7

5 1

6 2

1

2

5

6
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0/4

3/7

1/5

2/6

0/4

3/7

1/5

2/6

0 4

1 5

2 6

3 7

4 0

5 1

6 2

7 3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

5

6

7

4

3

2

1

4

1

2

3

0

5

6

7
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0/6

5/7

4/2

1/3

4/2

1/3

0/6

5/7

0 4

2 6

1 5

4 0

5 1

7 3

6 2

3 7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

5

6

7

4

3

2

1

4

1

2

3

0

5

6

7

0 4

7

6

5

3

2

1

4

2

1

3

6

5

0

7
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2. Use Gray codes to show that a 64-node hypercube is isomorphic to a 4 x 4 x 4 torus.

Each torus node has a three component address (x, y, z) where each component value is 0, 1, 2, or 3.  To map to a hypercube, 
each of the three components is  mapped to two bits in the hypercube address using the 2-bit Gray code:

torus address hypercube bits
component

0 00
1 01
2 11
3 10

To see that adjacencies are preserved, consider torus node (1, 2, 3) and its neighbors:

torus address hypercube address

(1, 2, 3) 011110
(0, 2, 3) 001110
(2, 2, 3) 111110
(1, 3, 3) 011010
(1, 1, 3) 010110
(1, 2, 2) 011111
(1, 2, 0) 011100

3. Show how to achieve the following mesh permutation using perfect matching and linear array sorting.

3,2 3,3 2,2 2,1

3,1 4,2 1,1 1,4

4,4 1,3 2,3 1,2

4,3 2,4 3,4 4,1

Start
Column

Destination
Column

1

2

1

2

3 3

4 4

3,2

3,1

4,3
4,4

4,2

1,3
3,32,4

1,1 2,2
2,3

3,4

2,1
4,1

1,2

1,4

Start
Column

Destination
Column

1

2

1

2

3 3

4 4

3,2

3,1

4,3
4,4

4,2

1,3
3,32,4

1,1 2,2
2,3

3,4

2,1
4,1

1,2

1,4

Matching 1

Start
Column

Destination
Column

1

2

1

2

3 3

4 4

3,2

4,3
4,4

1,3
3,32,4

1,1 2,2

3,4

2,1
4,1

1,2

Matching 2
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Start

Column
Destination

Column

1

2

1

2

3 3

4 4

4,3
4,4

3,32,4

1,1 2,2

4,1
1,2

Matching 3

Start
Column

Destination
Column

1

2

1

2

3 3

4 4

4,4

3,3

2,2

4,1

Matching 4

3,2

3,3 2,2

2,1

3,1 4,2

1,1

1,4

4,4

1,3

2,3

1,24,3 2,4

3,4

4,1

Routing within columns
for four matchings

3,2

3,32,2

2,1

3,1 4,2

1,1

1,4

4,4

1,3

2,3

1,2 4,3 2,4

3,4

4,1

Sort within rows based
on column destination

3,2 3,3

2,22,1

3,1

4,2

1,1 1,4

4,4

1,3

2,3

1,2

4,3

2,4

3,4

4,1

Sort within columns
based on column destination

4. Derive an all-to-all broadcast scheme for a 4-d hypercube similar to the one used for 6-d hypercubes.

Lower bounds indicate that 4 rounds are sufficient.

0000/1

0001/4

0011/4 0101/2

0111/4

1111/1

1

2

3 4

4

5. How many automorphisms are there for a complete binary tree with h = 4?
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Since each parent node has two orientations for its children, there are 215 = 32768 automorphisms

6. How many vertex equivalence classes does a 4x5 torus have?  A 4x5 mesh?

Torus:  1
Mesh:  6

7. How many automorphisms does a 5-node ring have?

10

8. . . .    Indicate which network classes are scalable and which are not.

Scalable:  linear array, mesh, binary tree, butterfly, fat tree,  hypercube, benes

Not scalable:  ring, torus

9. Consider an r-dimension array with N = N1 = Nr and N is odd.  What is the bisection width?

(Nr - 1)/(N - 1) by using a geometric sum (1 + N1 + N2 + . . . + Nr-1).

10. Draw the fat tree with depth = 2 and degree = 3.

0,0 0,1 0,2 0,3

0,0 0,1 1,0 1,1 2,0 2,1

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0

0

1

2


