Elementary Data Dependence Concepts

1: Entry
1: integer a
1: integer b
1: integer c
1: integer d
1: integer e
2: a = b+c
3: d = a+2
4: e = a+3

flow dependence 2: --> 3:
flow dependence 2: --> 4:

1: Entry
1: integer a
1: integer b
1: integer c
1: integer d
1: integer e
2: a = b+c
3: b = d/2

anti dependence 2: --> 3:

Loops and Data Dependence

1: Entry
1: integer a(1:3)
1: integer b(1:3)
1: integer c(1:3,1:2)
2: for i = 1,3 do
3: a(i) = b(i)
4: for j = 1,2 do
5: c(i,j) = a(i)+b(j)
6: endfor
4: endfor

May be "unrolled" as:

1: Entry
1: integer a(1:3)
1: integer b(1:3)
1: integer c(1:3,1:2)
2: a(1) = b(1)
3: c(1,1) = a(1)+b(1)
4: c(1,2) = a(1)+b(2)
5: a(2) = b(2)
6: c(2,1) = a(2)+b(1)
7: c(2,2) = a(2)+b(2)
8: a(3) = b(3)
9: c(3,1) = a(3)+b(1)
10: c(3,2) = a(3)+b(2)

To yield the detailed dependence list:
From the original code, this is analyzed as:

flow dependence 3: --> 5: (=) (0)

which indicates a flow dependence from 3 to 5 only within the same iteration of the outer loop.

This indicates that a dependency from an earlier iteration to a later iteration.

anti dependence 4: --> 3: (<) (1)

This dependence indicates that the a value being used gets overwritten in a later iteration.
Arrays and Data Dependence

Given the ranges of loop indices and two subscripting expressions:

Might they refer to the same array entry?

Inherently pessimistic - exact analysis is time-consuming (but often feasible)

\[
\text{do I = L, U} \\
S_1: \quad A(c*I + j) = \ldots \\
S_2: \quad \ldots = A(d*I + k) \\
\text{end do}
\]

c, d, j, k are constants.

c*I + j = d*I + k has a solution iff \((k - j) \mod \text{GCD}(c,d) = 0\).

So for:

1: Entry
1: integer j
1: integer a(1:100)
2: for i = 1,40 do
3: a(2*i) = i
4: j = a(2*i+1)
2: endfor

The two references to A elements are different:

\((1 - 0) \mod \text{GCD}(2,2) = 1 \neq 0\)

and there is still a dependence:

output dependence 4: --> 4:(<) (*)

1: Entry
1: integer j
1: integer k
1: integer a(1:200)
2: for i = 1,10 do
3: a(19*i+3) = j
4: k = a(2*i+21)
2: endfor

\((21 - 3) \mod \text{GCD}(19,2) = 0\)

A flow dependence occurs from with I = 2 for 3: and with I = 10 for 4:

flow dependence 3: --> 4:(<=) (*)
output dependence 4: --> 4:(<) (*)

More powerful methods:

Integer programming (integer solution to linear program)

Omega test (Presburger arithmetic):

Natural numbers

Functions: +, -, and multiplication by repeated addition
Predicates: ≤, <, ≥, >, =

Logical connectives (∧, ∨, ¬) and quantifiers (∃, ∀)

Best algorithm takes 2^{2^n} time

Code Generation (very small sample of compiler tricks)

Loop Vectorization

```plaintext
1: Entry
1: integer a(1:100)
1: integer b(1:100)
1: integer c(1:100)
1: integer e(1:100)
2: for i = 1,99 do
  3:  a(i) = b(i)
  4:  c(i) = a(i)+b(i)
  5:  e(i) = c(i+1)
2: endfor

flow dependence 3: --> 4:(=) (0)
anti dependence 5: --> 4:(<) (1)

Vectorized: (Note: “forall” indicates that statements in the body are vectorized and each is completed before the next statement begins execution)

```plaintext
1: Entry
1: integer a(1:100)
1: integer b(1:100)
1: integer c(1:100)
1: integer e(1:100)
2: forall i = 1,99 do
 3: a(i) = b(i)
 4: e(i) = c(i+1)
 5: c(i) = a(i)+b(i)
2: endfor
```

```plaintext
1: Entry
1: integer n
1: integer a(1:100)
1: integer b(1:100)
1: integer c(1:100)
1: integer e(1:100)
2: for i = 2,n do
 3: a(i) = b(i)
 4: c(i) = a(i)+b(i-1)
 5: e(i) = c(i+1)
 6: b(i) = c(i)+2
2: endfor

anti dependence 3: --> 6:(=) (0)
flow dependence 3: --> 4:(=) (0)
flow dependence 4: --> 6:(=) (0)
anti dependence 5: --> 4:(<) (1)
flow dependence 6: --> 4:(<) (1)
```
Since 4 and 6 have a cycle of dependences, the for loop cannot be completely vectorized:

```plaintext
1: Entry
1: integer n
1: integer a(1:100)
1: integer b(1:100)
1: integer c(1:100)
1: integer e(1:100)
2:forall i = 2,n do
3: a(i) = b(i)
4: e(i) = c(i+1)
2: endfor
6: for i = 2,n do
7: c(i) = a(i)+b(i-1)
8: b(i) = c(i)+2
6: endfor
```

Loop Concurrentization (``doall’’)

```plaintext
1: Entry
1: integer n
1: integer a(1:100,1:100)
1: integer b(1:100,1:100)
1: integer c(1:100,1:100)
1: integer d(1:100,1:100)
1: integer e(1:100,1:100)
2: for i = 1,n do
3: for j = 1,n do
4: a(i,j) = b(i,j)+c(i,j)
5: c(i,j) = d(i,j)/2
6: e(i,j) = a(i,j-1)**2+e(i,j-1)
3: endfor
2: endfor
```

anti dependence 4: --> 5:(=,=)  (0,0)
flow dependence 4: --> 6:(=,<)  (0,1)
flow dependence 6: --> 6:(=,<)  (0,1)

= data dependence directions on outer loop allows it to be done in parallel:

```plaintext
1: Entry
1: integer n
1: integer a(1:100,1:100)
1: integer b(1:100,1:100)
1: integer c(1:100,1:100)
1: integer d(1:100,1:100)
1: integer e(1:100,1:100)
2: doall i = 1,n do
3: for j = 1,n do
4: a(i,j) = b(i,j)+c(i,j)
5: c(i,j) = d(i,j)/2
6: e(i,j) = a(i,j-1)**2+e(i,j-1)
3: endfor
2: endfor
```

Cannot be concurrentized due to the forward dependence:

anti dependence 3: --> 4:(=)  (0)
flow dependence 3: --> 5:(<)  (1)
flow dependence 4: --> 5:(=)  (0)
Sequent FORTRAN (precursor to OpenMP)

CSDOACROSS Compiler Directive:

1. Causes loop to be performed in parallel, assigning iterations to different processors via m_fork().
2. Has various options to ensure correct execution.
3. Does not transform in any major way; programmer does the dependency analysis.

Variable Analysis: Determine ways that the variables restrict the parallel execution.

1. Shared variables (SHARE): no restriction on loop
   a. Read-only variables
   b. Array elements are accessed (read or written) within one iteration.
      (Nested loops are executed serially.)

2. Local variables (LOCAL): use private copy instead of shared copy
   a. Temporary variables (initialized before use)
   b. Nested loop indices
      LASTLOCAL: Need value from last loop iteration

3. Reduction variable (REDUCTION): A variable used in a single var = var op expr where op commutes and associates (+, *) or can be forced to do this (-, /). Also includes MIN and MAX.

4. Shared ordered variables (SHARE): Variable (or array element) used to communicate between iterations.
   a. Must delimit by declaring region(s) where shared ordered variable is accessed

      c$order name
      c$endorder name

   b. Ensure that all iterations will access the region exactly once
   c. Ordering is achieved by: 1) spinning on a counter at beginning of ordered section and 2) setting for next iteration to continue.

5. Shared locked variables (SHARE): Variable accessed by multiple iterations, order does not matter.
   a. Often corresponds to specialized "reduction" variables
   b. Requires locking, two ways
      1. m_lock(), m_unlock()
      2. Declare lock names in LOCKS() clause of CSDOACROSS
         CSLOCK name
         CSUNLOCK name
         Can overlap these, cannot nest.
Warshall's Algorithm for Transitive Closure

```fortran
for j:=1 to n do
 for i:=1 to n do
 if A[i,j] then
 for k:=1 to n do

program warshall
dimension ia(20,20)
do 10 j=1,n
do 10 i=1,n
 if (ia(i,j) .eq. 1) then
 do 20 k=1,n
 ia(i,k)=max(ia(i,k),ia(j,k))
 endif
 10 continue
stop
end

DOACROSS for j-loop

Shared
Local i, k
Reduction
Shared Ordered ia: ordered region includes entire i-loop, USELESS
Shared Locked

DOACROSS for i-loop

Shared j, ia
Local k
Reduction
Shared Ordered
Shared Locked

DOACROSS for k-loop

Shared i, j, ia
Local
Reduction
Shared Ordered
Shared Locked

Best is the i-loop:

program warshall
dimension ia(20,20)
do 10 j=1,n
C$DOACROSS SHARE(j,ia),LOCAL(k)
do 10 i=1,n
 if (ia(i,j) .eq. 1) then
 do 20 k=1,n
 ia(i,k)=max(ia(i,k),ia(j,k))
 endif
 10 continue
stop
end
```
Pascal’s Triangle

```fortran
program pascal
integer combs
dimension combs(0:200,0:200)
combs(0,0)=1
do 10 i=1,200
 combs(i,0)=1
10 combs(i,i)=1
do 20 i=2,200
 do 20 j=1,i-1
20 combs(i,j)=combs(i-1,j-1)+combs(i-1,j)
stop
end
```

As TINY input:

1: Entry
1: integer combs(0:200,0:200)
2: for i = 1,200 do
3:  combs(i,0) = 1
4:  combs(i,i) = 1
2: endfor
6: for i = 2,200 do
7:  for j = 1,i-1 do
8:   combs(i,j) = combs(i-1,j-1)+combs(i-1,j)
7:  endfor
6: endfor

Dependences

flow dependence 3: --> 8:
flow dependence 4: --> 8:
flow dependence 8: --> 8(<,<) (1,1)
flow dependence 8: --> 8(<,=) (1,0)

Concurrent Version:

1: Entry
1: integer combs(0:200,0:200)
2: doall i = 1,200 do
3:  combs(i,0) = 1
4:  combs(i,i) = 1
2: endfor
6: for i = 2,200 do
7:  doall j = 1,i-1 do
8:   combs(i,j) = combs(i-1,j-1)+combs(i-1,j)
7:  endfor
6: endfor

FORTRAN Version:

```fortran
program pascal
integer combs
dimension combs(0:200,0:200)
combs(0,0)=1
c$doacross share(combs)
do 10 i=1,200
c$doacross shared(combs,i)
do 10 i=1,200
do 20 i=2,200
 do 20 j=1,i-1
20 combs(i,j)=combs(i-1,j-1)+combs(i-1,j)
stop
end
```
Maximize parallelism/speed for computing:

\[ \sum_{i,j,k,l} p_{i,k} p_{j,l} \sqrt{(i-k)^2 + (j-l)^2} \]

```fortran
PROGRAM twod
DIMENSION p(50,50)

sum=0.0
do 10 i=1,50
do 10 j=1,50
 p(i,j)=float(i+j)
10 sum=sum+p(i,j)
do 20 i=1,50
do 20 j=1,50
20 p(i,j)=p(i,j)/sum
sum=0.0
do 30 i=1,50
do 30 j=1,50
 do 30 k=1,50
 do 30 l=1,50
30 sum=sum+p(i,j)*p(k,l)*sqrt(float(i-k)**2+float(j-l)**2)
do 40 i=1,50
do 40 j=1,50
40 print 40,sum
40 format(f8.4/)
stop
end
```

Solution:

```fortran
PROGRAM twod
DIMENSION p(50,50), f(51), s(51,51)
call m_set_procs(7)
sum=0.0
do 10 i=1,50
do 10 j=1,50
 p(i,j)=float(i+j)
10 sum=sum+p(i,j)
cdoacross share(p,sum), local(j)
do 20 i=1,50
do 20 j=1,50
20 p(i,j)=p(i,j)/sum
cdoacross share(f)
do 25 i=1,51
25 f(i)=float(i-1)**2
cdoacross share(f,s)
do 27 i=1,51
27 s(i,j)=sqrt(f(i)+f(j))
sum=0.0
cdoacross reduction(sum), local(j,k,l,sum2), share(p,s)
do 30 i=1,50
do 30 j=1,50
 sum2=0.0
 do 35 k=1,50
 do 35 l=1,50
35 sum2=sum2+p(k,l)*s(iabs(i-k)+1,iabs(j-l)+1)
do 40 i=1,50
do 40 j=1,50
 sum=sum+p(i,j)*sum2
40 print 40,sum
40 format(f8.4/)
stop
end
```
The “Future” of SMP with thread support - OpenMP

Extension of ideas in Sequent FORTRAN (common ancestry)

FORTRAN, C, and C++ APIs

Potential for tools to generate OpenMP code from sequential code

Claim: Easy to work between sequential and parallel versions by disabling compiler directives.

Claim: Pthreads is not intended for parallel programming and does not provide sufficient support.

Emphasis on work-sharing (more options than Sequent) for for-loops in legacy code. Code profiling is important.

Efforts toward mixing MPI with OpenMP.

Tutorial available from web page.