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This tutorial discusses Householder reduction of n linear equations to a triangular
form which can be solved by back substitution. The main strength of the method is its
unconditional numerical stability. We explain how Householder reduction can be
derived from elementary-matrix algebra. The method is illustrated by a numerical
example and a Pascal procedure. We assume that the reader has a general knowledge
of vector and matrix algebra but is less familiar with linear transformation of a vector
space.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear
Algebra—linear systems (direct methods)

General Terms: Algorithms
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INTRODUCTION

The solution of linear equations is impor-
tant in many areas of science and engi-
neering [Kreyszig 1988]. This tutorial
discusses Householder reduction of n
linear equations to a triangular form that
can be solved by back substitution
[Householder 1958; Press et al. 1989].
The main strength of the method is its
unconditional numerical stability. Text
books on numerical analysis often pro-
duce Householder reduction like a rabbit
from a magician’s top hat. We will ex-
plain how the method can be derived
from elementary matrix algebra. The
method is illustrated by a numerical ex-
ample and a Pascal procedure.

We assume that the reader has a
general knowledge of vector and matrix
algebra but is less familiar with linear
transformation of a vector space.

We begin by looking at Gaussian
elimination.

1. GAUSSIAN ELIMINATION

The classical method for solving a system
of linear equations is Gaussian elimina-
tion. Suppose we have three linear equa-
tions with three unknowns x,, x,, x5:

2x, +2x, +4x; =18
xy +3xy —2x4 =1

3x, + xy +3x; = 14.
First, we eliminate x; from the second
equation by subtracting 3 of the first
equation from the second one. Then, we
eliminate x, from the third equation by
subtracting £ of the first equation from
the third one. Now, we have three equa-
tions in which x; occurs in the first
equation only:

2%, +2x9 +4x; =18
-8
—13.

2x, —4x, =

il

—2x, — 3x4
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Finally, we eliminate x, from the third
equation by adding the second equation
to the third one. The equations have now
been reduced to a triangular form that
has the same solution as the original
equations but is easier to solve:

2x, +2x, +4x; =18

-8
—21.

2x, —4dx5 =

I

The triangular equations are solved by
back substitution. From the third equa-
tion we immediately have x; = 3. By
substituting this value in the second
equation, we find x, = 2. Substituting
these two values in the first equation we
obtain x; = 1.

In general we have n linear equations
with n unknowns

apx; tayx, +

Ao1Xx7 + Aggxy +

a, X, +a,,%9 +

The o’s and b’s are known real numbers.
The x’s are the unknowns we must find.

The equation system (1) can be ex-
pressed as a vector equation

Ax =b (2)
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where A is an n X n matrix,

Q11 Qyg Ay

Ay Qa9 Qgp
A= . : .

a’nl an? ann

while x and b are n-dimensional column

vectors

The equation system has a unique solu-
tion only if the matrix A is nonsingular
as defined in the Appendix.

Gaussian elimination reduces Eq. (2)
to an equivalent form

Ux =c¢

where U is an n X n upper triangular
matrix

Uyp Uy Uyn

0 uy Uap
= .

0 0 u

with all zeros below the main diagonal.
The elimination process replaces the
original righthand side & by another n-
dimensional column vector c.

The scaling of equationg is a source of
numerical errors in Gaussian elimina-
tion. To eliminate the first unknown x,
from, say, the second equation, we sub-
tract the first equation multiplied by
@y /ay; from the second equation. How-
ever, if the pivot element a,, is very
small, the scaling factor a,, /a,, becomes
very large, and we may end up subtract-
ing very large reals from very small
ones. This makes the results highly
inaccurate.
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The numerical instability of Gaussian
elimination can be reduced by a process
called pivoting: By changing the order in
which the equations are written, we can
make the pivot element as large as possi-
ble. We examine the first coefficient of
every equation, that is

Ctu, a21,. . .,anl.

If the largest of these coefficients is, say,
ay;, then we exchange Equations 1 and 5.
After this rearrangement, we subtract
multiples of the (new) first equation from
the remaining ones. The pivoting process
is repeated for each submatrix during
the Gaussian elimination.

Pivoting rearranges both the rows of
the matrix and the elements of the right-
hand side. The algorithm must keep track
of this permutation in an additional vec-
tor. Although pivoting does not guaran-
tee numerical stability, numerical ana-
lysts believe that it works in practice
[Golub and Van Loan 1989; Press et al.
1989].

In the following, we describe an alter-
native method that is numerically stable
and does not require pivoting. This
method has been used in a parallel algo-
rithm [Brinch Hansen 1990a, 1990b].

2. SCALAR PRODUCTS

Householder’s method requires the com-
putation of scalar products and vector
reflections. The following is a brief expla-
nation of these basic operations. The Ap-
pendix defines the elementary laws of
vector and matrix algebra, which we will
take for granted.
Let ¢ and b
column vectors

be two n-dimensional
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The transpose of a and b are the row
vectors

al =[ajay - a,]
bY =[bb, - b,].
The scalar product of a and b 1s
a’d = a;by + agby + - +a,b,. (3)
A scalar product is obviously symmetric
a’b =b'a. (4)
The Euclidean norm
lall = ya? + a2+ +a2  (5)

is the length of an n-dimensional vector
a.

From Eqs. (3) and (5) we obtain an
equivalent definition of the norm

lall? = a’a. (6)

3. REFLECTION

Householder reduction of an n X n real
matrix has a simple geometric interpre-
tation: The matrix columns are regarded
as vectors in an n-dimensional space.
Each vector is replaced by its mirror im-
age on the other side of a particular plane.
This plane reflects the first column onto
the first axis of the coordinate system to
produce a new column with all zeros af-
ter the first element.

Let us first lock at reflection in three-
dimensional space. The reflection plane
P includes the origin O and is perpen-
dicular to a given vector v. For an arbi-
trary vector a, we wish to find another
vector b, which is the reflection of a
on the other side of the plane P. Figure
1 shows a plane that includes the vec-
tors v, a, and b. The dotted line repre-
sents the reflection plane P, which is
perpendicular to v.

The concept of reflection is defined by
three equations. The reflection plane P
is determined by the vector v. To simplify
the algebra, we assume that v is of length
1:

lvll = 1. (7

ACM Computing Surveys, Vol. 24, No. 2, June 1992
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Reflection.

Figure 1.

Reflection preserves the norm of a vector:

(8)

The difference between a vector a and its
reflection & is a vector fv, which is a
multiple of v:

lall =18l

fv=a —b. (9)
The (unknown) scalar f is the distance
between the vector and its reflection.

We must find the reflection of an arbi-
trary vector a through a plane P defined
by a given unit vector v. We have

lall? = 11512
= (a —fv)"(a - fv)

by (8)

by (6), (9)
=a%a — fa™v - fola + f2™
= llal® — 2fv%a + f*
by (4), (6), (7).

This equality determines the distance
[ between vector ¢ and its image b:

f=2v"a. (10)

The reflection of b into a displaces b
by the same distance f in the opposite
direction. So we can also express the
distance as

f=—207b. (11)
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Finally we define b in terms of a and
v

b=a—vf by (9)
=Ia — v(2v"a) by (10)
= (I - 2wT)a

where I is the n X n identity matrix
defined in the Appendix.

In other words, the reflection of a
vector a is the vector

b = Ha (12)
obtained by multiplying a by the n X n
reflection matrix

H=1-2w". (13)
H is also called a Householder matrix.
This is the “rabbit” that is often pulled
out of the hat without any explanation of
why it has this particular form.

Figure 1 is a geometric definition of
reflection in three-dimensional space.
However, the algebraic equations derived
from this figure make no assumptions
about the dimension of space. In the fol-
lowing, we will simply say that Eqs. (12)
and (13) define a transformation of an
n-dimensional vector. By analogy, we will
call this transformation a “reflection”
through an (n — 1)-dimensional plane.
The essential property is that reflection
of an n-dimensional vector preserves the
norm:

|Hall = llall.

This follows from Egs. (8) and (12).
If we reflect a vector twice through the
same plane, we get the same vector again:

H(Ha) = a.

In other words, two reflections are equiv-
alent to an identity transformation:

HH =1.

Consequently, H is a nonsingular matrix
that is its own inverse:

H'=H
(see the Appendix).



Householder Reduction of Linear Equations .

4, HOUSEHOLDER REDUCTION

We are looking for an algorithm that
reduces an n X n real matrix A to trian-
gular form without increasing the magni-
tude of the elements significantly.

An element of a column can never
exceed the total length of the column
vector. That is

la,,| < lla,ll for 7,j=1,2,...,n.
In other words, the norm of a col-
umn vector is an upper bound on the
magnitude of its elements.

A method that changes the elements of
a matrix A without changing the norms
of its columns will obviously limit the
magnitude of the matrix elements. This
can be achieved by multiplying A by a
Householder matrix H.

If we multiply a system of linear
equations

Ax=b>

by a nonsingular matrix H, we obtain an
equation

(HA)x = Hb

that has the same solution as the
original system.

The first step in Householder reduc-
tion produces a matrix HA that has all
zeros below the first element of the first
column.

The reflection must transform column

a; =lay as - anl]T (14)
into a column of the form
Ha, =[d;; 0 - 0]"  (15)
where the diagonal element is
dyy = Lllayl. (16)

The choice of sign will be made later.

Equations (14)—-(16) define the compu-
tation of the first column of the matrix
HA.
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The difference between column ¢, and
its reflection Ha, is the column vector

by (9)
=a, — Ha, by (12).

Combining this with Egs. (14) and (15)
we find

fiv=a, = b,

fiv=1[wy ay an1]T (17)
where the first element is
Wy = @y — dyy. (18)

The distance between a; and its image
Ha, is f, where

fl2 = fi( _Z'UTHal)
= —2(fyv) Hay

by (11), (12)

= —2wydyy by (3), (15), (17).

In short,

fi= V —2wyqdy;

The unit vector v that determines the
appropriate Householder matrix is

v=f1v/f
or by Eq. (17):

(19)

an1]T/f1- (20)

After the transformation of the first
column a,, each remaining column a, is
also replaced by its reflection through
the same plane defined by Egs. (9), (10),
and (12).

v=[wy ay

Ha,=a;,—fv (21)
f, = 2v%q, (22)

The reflection of a column is obtained
by subtracting a multiple of the unit
vector v.

5. NUMERICAL STABILITY

We still need to decide which sign to use
for the diagonal element d,; in Eq. (16).

If d,; = a4, the scalars w; and f; are
zero by Egs. (18) and (19), and the divi-
sion by f; in Eq. (20) causes overflow.
We can avoid this problem by selecting
the sign that makes d;; # a,;.

ACM Computing Surveys, Vol. 24, No. 2, June 1992
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The overflow problem occurs when a,
is a multiple of the unit vector

e, =10 - 0]".

For a, = a;,e, there are four cases to
consider:

ay > 0:dy; = Hlall=  ayy
(overflow)
dy = —llayll = —ay
(no overflow)
ay <0:dyy = +llayll= —ay;
(no overflow)
dy = —la,ll = Qg

(overflow)

If o, is close to a multiple of e,, serious
rounding errors may occur if f] is very
small.
This insight leads to the following rule:
dyy =ifa;,; >0

then —lla,ll else lla,ll. (23)

6. COMPUTATIONAL RULES

We are now ready to summarize the rules
for computing the matrix HA as defined
by Egs. (3), (6), (15), and (18)—(23):

llayll = yala,

dyy =if a;; > 0 then —|la || else |la,]|
Wy = day ~dy

fi=V-2wndy (21)
Ha, =[d, 0 - 0]"

v=[wy ay an1]T/f1

fi=2v"a,forl<i<n

Ha, = a, —fv

Householder’s algorithm reduces a sys-
tem of linear equations to upper triangu-
lar form in n — 1 steps.
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The first step reduces A to a matrix
HA with all zeros below the diagonal
element in the first column. At the same
time, b is transformed into a vector Hb.
This computation, defined by Eq. (24), is
called a Householder transformation.

HA Hb
(* x ] [
0 * * T % ]
0 * *

The second step reduces the (n — 1) X
(n — 1) submatrix of HA shown above by
Householder transformation. Now, we
obtain a matrix with zeros below the di-
agonal elements in the first two columns.
The same transformation is applied to
the (n — 1) X 1 subvector of Hb shown
above.

By a series of Householder transforma-
tions, applied to smaller and smaller sub-
matrices and subvectors, the equation
system is reduced, one column at a time,
to upper triangular form.

7. A NUMERICAL EXAMPLE

We now return to the previous example
of three equations with three unknowns.
For convenience, we combine the matrix
A and the vector 4 into a single 3 X 4
matrix

A0 =

2 2 4 18
1 3 -2 1]
3 1

3 14

First, we reduce A0 to a matrix Al
with all zeros below the diagonal element
in the first column. This is done column
by column using Eq. (24). The numbers
shown below were produced by a com-
puter using 64-bit real arithmetic and
rounded to four decimal places in the
printing.
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First column:
a;=[213]"

v=[0.8759 0.1526 0.4577]"
fi = 6.5549

Ha, = [-3.7417 0 0]".

Second column:
a,=[2 3 1]"
f, = 5.3344

Ha, = | —2.6726 2.1862 —1.4414]".

—3.7417 —-2.6726
Al = 0 2.1862
0 —1.4414
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Third column:

ag = [4 —2 3]"

fs = 9.1433

Ha, = [~4.0089 —3.3949 —1.1846].

Fourth column:

a, = [18 1 14]”
f, = 44.6536

Ha,

[-21.1136 —5.8123 —6.4368]".

We now have the matrix

—-4.0089 —21.1136
—3.3949 -5.8123 |.
—1.1846 —6.4368

The next step of the algorithm reduces the 2 X 2 submatrix

Al = 2.1862 —3.3949
—-1.4414 —1.1846
to

, _ | —2.6186 2.1822
A2 = [ 0 —2.8577

The final triangular matrix
—-3.7417 -2.6726
A2 = 0 -2.6186

0 0

consists of the first row and column of
Al and the submatrix A2'.

The triangular equation system is
solved by back substitution to obtain

x = [1.0000 2.0000 3.0000]".

~5.8123
—6.4368

1.3093
—8.5732

|

—4.0089 —21.1136
2.1822 1.3093
—2.8577 —8.5732

8. PASCAL PROCEDURE

The following Pascal procedure assumes
that the matrix A is stored by columns,
that is, a[i] denotes the ith column of A.
For each submatrix of A, the eliminate
operation is applied to the first column,
and the transform operation is applied to
each remaining column {(including b).

ACM Computing Surveys, Vol. 24, No. 2, June 1992
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type
column = array [1..n] of real;
matrix = array [1..n] of column;

procedure reduce (var a: matrix;
var b: column};
var vi: column; i. J: integer;

function product(i: integer;
var a, b: column)- 1eal;
{ the scalar product of
elementsi.n of a and b }
var ab: real; k: integer:
begin
ab =00,
for k :=1to n do
ab := ab + a[k]*b[k],
product = ab
end;

procedure eliminate(i: integer;
var ai, vi: column);
var anorm, dii, fi, wii: real;
k: integer;
begin
anorm :=
sqrt(product(i, ai, ai));
if ai[i] > 00
then dit := —anorm
else dii := anorm,
wil .= aifi] — dii;
i = sqrt(—2.0*wi*du);
vifi] := wii/fi;
aill] == di,
fork:=1+4+ 1tondo
begin
vilk] = ailk]/fi ;
ailk] :== 0.0
end
end:;
procedure transform(i: integer;
var aj, vi: column);
var fi: real; k: integer;
begin
fi := 2.0*product(i, vi, aj);
for k:=1tondo
ajlk] = ajk] — fi*vifk]
end;
begin
fori'=1ton —1do
begin
eliminate (i, ali]. v1);
forj-=i1+4+ 1tondo
transform(i, afj], vi);
transform(i, b, vi);
end
end

ACM Computing Surveys. Vol. 24, No. 2, June 1992

For n > 1, the execution time of the
algorithm is dominated by the transform
procedure, which uses one addition, one
subtraction, and two multiplications per
array element. The ith submatrix re-
quires n —i + 1 transform operations,
each involving 4(n — i + 1) arithmetic
operations. So the total number of nu-
merical operations is approximately

n—1 n
Y d(n—-i+1)>= Y 4k? = 4n%/3.
1=1 k=2

A similar analysis shows that Gaussian
elimination requires 2n3/3 arithmetic
operations only.

SUMMARY

We have explained Householder’s method
for reducing a matrix to triangular
form. The main advantage of the method
is its unconditional numerical stability.
We have illustrated the computation
by a numerical example and a Pascal
procedure.

Gaussian elimination and Householder
reduction of an n X n matrix both have
0O(n®) complexity. However, Householder
reduction requires twice as many nu-
merical operations. For that reason,
Householder reduction is seldom used
to solve linear equations on a sequential
computer.

Why then should we be interested in
Householder reduction?

(1) For some matrices, Gaussian elimi-
nation with pivoting is highly inacecu-
rate. Numerical analysts believe that
ill-conditioned matrices are so rare
that pivoting 1s stable “in practice.”
However, we have not found a theo-
retical or statistical justification of
this claim in the literature. House-
holder’s method is unconditionally
stable, both in theory and in practice.
An engineer usually prefers a sta-
ble method with reasonable speed to
a faster, but potentially unstable,
technique.
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(2) When a multicomputer with p pro-
cessors solves n linear equations in
parallel, the solution time has the
form

_ 3
T, =an’/p + bn”

where a and b are system-dependent
constants of matrix transformation
and processor communication. The
transformation time is reduced by the
number of processors. The communi-
cation time is proportional to the
number of matrix elements. Paral-
lelism reduces the transformation
time, but not the communication
time. Since Gaussian elimination and
Householder reduction require the
same amount of communication, a
multicomputer reduces the time dif-
ference between these methods. On a
Computing Surface with 45 transput-
ers, we used both methods to solve
1000 equations. The parallel solution
times differed by 50% only [Brinch
Hansen 1990b, 1992]. For parallel so-
lution of linear equations, House-
holder reduction is an attractive
compromise between unconditional
numerical stability and computing
speed.

(3) Finally, it should be mentioned that
Householder reduction is used for
least squares and eigenvalue compu-
tations in the Linpack procedures
developed at Argonne National Labo-
ratory [Dongarra et al. 1979].

Householder reduction is an interest-
ing example of a fundamental computa-
tion with a subtle theory and a short
algorithm. The reader who is interested
in further details and alternative meth-
ods will find them in the books by Golub
and Van Horn [1989] and Press et al.
[1989].

APPENDIX: MATRIX ALGEBRA

In the algebraic laws, A, B, and C de-
note matrices, while & is a scalar.
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The identity matrix is

1
0

0

0
0
1
0 0

[on i en) et O
= o o O

The transpose AT is the matrix ob-
tained by exchanging the rows and
columns of the matrix A.

The inverse of a matrix A is a matrix
A1 such that

AATL =1,

If A™! exists then A is called a nonsin-
gular matrix.

The laws apply also to vectors since
they are n X 1 (or 1 X n) matrices.

Identity Law:

IA=AI=A
Symmetry Law:
A+B=B+A

Associative Laws:
A+(Bx£C)=(A+B)+C
A(BC)= (AB)C
Distributive Laws:
A(B £ C)=AB + AC
(A+B)C=AC+ BC

Transposition Laws:

IT=1
(A7) =A
(A +B)" =AT 4+ BT
(AB)" = BTAT
Scaling Laws:
kA = Ak
k(AB) = (kA)B = A(kB)
RAT = (RAY"
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