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Abstract

Current parallelizing compilers cannot identify a significant fraction of parallelizable loops because
they have complex or statically insufficiently defined access patterns. This type of loop mostly occurs in
irregular, dynamic applications which represent more than 50% of all applications [20]. Making parallel
computing succeed has therefore become conditioned by the ability of compilers to analyze and extract the
parallelism from irregular applications. In this paper we present a survey of techniques that can complement
the current compiler capabilities by performing some form of data dependence analysis during program
execution, when all information is available.

After describing the problem of loop parallelization and its difficulties, a general overview of the need
for techniques of run-time parallelization is given. A survey of the various approaches to parallelizing
partially parallel loops and fully parallel loops is presented. Special emphasis is placed on two parallelism
enabling transformations, privatization and reduction parallelization, because of their proven efficiency. The
technique of speculatively parallelizing doall loops is presented in more detail.

This survey limits itself to the domain of Fortran applications parallelized mostly in the shared memory
paradigm. Related work from the field of parallel debugging and parallel simulation is also described.



1 Automatic Parallelization

In recent years parallel computers have finally begun to move from university and national laboratories
into the mainstream of commercial computing. This move has been caused by advances in technology
(miniaturization), lower costs and an ever increasing need for more computing power. Unfortunately,
although the hardware for these systems has been built and is commercially available, exploiting their
potential in solving large problems fast, i.e., obtaining scalable speedups, has remained an elusive goal
because the existing software to run these machines did not keep up with the technological progress.

We believe that a necessary condition for parallel processing to truly become mainstream is to deliver
sustainable performance (speedups across a wide variety of applications) while requiring only the same
or similar efforts on the part of the user as is the case for sequential computing. We recognize three
complementary avenues towards obtaining a scalable speedups on parallel machines:

� Good parallel algorithms – to create intrinsic parallelism in a program.

� Development of a standard parallel language for portable parallel programming.

� Restructuring compilers to optimize parallel code and parallelize sequential programs.

We believe parallel algorithms are absolutely essential for writing a program that is to be executed
on a parallel system. It is not possible to obtain a scalable concurrent execution from an application that
employs inherently sequential methods. Once this is agreed upon, there are two different ways to express
this parallelism: explicitly or implicitly. Explicitly written parallel programs can potentially produce good
performance if the programmer is very good and the problem size (and difficulty) is manageable. Achieving
this requires a parallel language that is both expressive as well as standardized. If we cannot clearly express
the algorithmic parallelism then the effort is wasted, and if the language is not a recognized standard, then
portability difficulties will make it non-economical. Additionally, we know from experience that even
for very well trained people coding only with explicit parallelism may be significantly more difficult and
time-consuming than programming in a sequential language. In particular solving concurrency and data
distribution issues is a very difficult and error-prone task, which is contrary to our principle that parallel
and serial program development should require similar effort. Expressing explicitly all levels ( from
instruction to task level) of parallelism within the same language and performing explicit optimizations that
are architecture specific are additional difficulties in coding parallel programs.

Just as important is the fact that parallel systems don’t run only newly written applications. There is
an enormous body of existing software that must be ported and perform well on these new systems. One
solution is to rewrite the so named ’legacy’ programs [9], but this could prove to be prohibitively expensive.
The alternative is to automatically transform them for concurrent execution by means of a restructuring
or parallelizing compiler. This compiler should be able to safely (without errors) detect the available
parallelism and transform the code into an explicitly parallel (machine) language. Most likely it would not
be able to modify the algorithms used by the original programmer and therefore the performance will be
limited (upper bounded by the intrinsic, and limited, parallelism of the original application).

We therefore think that the ideal parallelizing compiler should be capable of transforming both ’legacy’
code and modern code into a parallel form. The new codes that use parallel algorithms can be written
in an established, standard language like Fortran 77, in an explicitly parallel language or, even simpler,
in a sequential language with parallel assertions. Coding in a hybrid language (serial language with
non-mandatory directives) should require the least amount of effort: the programmer expresses as much
knowledge about the code as he/she has and leaves the rest for automatic processing. Such a compiler must
address two major issues: (a) parallelism detection and (b) parallelism exploitation.
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Parallelism detection means finding the portions of code that can be safely executed concurrently and the
relative order (the synchronizations) that must be maintained between their components. For this purpose
the compiler needs to analyze the code and transform it into explicit parallel constructs.

Parallelism exploitation or optimization requires using the data and control dependence information
previously detected for scheduling the work on a target architecture. In this process issues like data
distribution for communication minimization and scheduling for load balancing have to be addressed.

1.1 The Need for Run-Time Parallelization

The first task of a restructuring compiler is to perform a data dependence analysis and detect the segments
of code that can be executed concurrently. Essentially this entails performing an analysis of the memory
access pattern, mainly through inspection of the expressions through which array elements are indexed.
From the point of view of access pattern analysis we distinguish two major classes of applications:

1. Regular programs whose memory accesses can be described by a ’well-behaved’ analytic function
which is statically defined. Current state-of-the-art compilers do a reasonable job in analyzing and
extracting the parallelism from these programs.

2. Irregular programs whose memory accesses are described through an ad-hoc map, usually represented
by a subscript array in Fortran or pointers in C. These indirection maps cannot be analyzed at compile
time if they are filled in only during program execution. Depending on how the subscript arrays are
defined at run-time we distinguish two subclasses of irregular applications:

(a) Programs with static memory patterns which are defined at the beginning of the execution by
reading in an input file (the data set). After the initial setup, the access pattern does not change
(but it is not available statically).

(b) Programs with dynamic memory patterns which are computation dependent and are modified
from one execution-phase to another, e.g., because of the changing interactions of the underlying
physical phenomena they are simulating.

Techniques addressing the issue of data dependence analysis have been studied extensively over the last
two decades [34, 47] but parallelizing compilers cannot perform a meaningful data dependence analysis
and extract a significant fraction of the available parallelism in a loop if it has a complex and/or statically
insufficiently defined access pattern. Unfortunately irregular programs, as previously defined, represent a
large part of all scientific applications. Several examples of codes that fall into this category are summarized
in Table 1. The first two, SPICE and DYNA3D are input dependent while the others are dynamic programs.
Since modeling techniques are becoming more sophisticated we believe that future large scale simulations
and computation will be dynamic in nature and will only increase the fraction of statically non-analyzable
codes. It is widely assumed that more than 50% of codes [20] are of the irregular type.

Thus, in order to realize the full potential of parallel computing it has become clear that static (compile–
time) analysis must be augmented with new methods [8, 12, 15]. We need techniques that let us access the
information necessary to decide if a loop is parallel and perform parallelizing transformations. The only
time this data is available is during program execution, at run-time. Run–time techniques can succeed where
static compilation fails because they have access to the input data. For example, input dependent or dynamic
data distribution, memory accesses guarded by run–time dependent conditions, and subscript expressions
can all be analyzed unambiguously during execution.

It should be noted that compilers can fail also due to limitations in their current analysis algorithms. For
example, most dependence analysis algorithms can only deal with subscript expressions that are linear in the
loop indices. In the presence of complex non–linear expressions, a dependence is usually assumed. Global
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Program Application Domain

SPICE circuit simulation
DYNA–3D structural mechanics
PRONTO–3D
GAUSSIAN quantum mechanical simulation
DMOL of molecules
CHARMM molecular dynamics simulations
DISCOVER of organic systems
FIDAP modeling complex fluid flows

Table 1: Irregular applications

parallelization, i.e., deeply nested loops containing subroutine calls, is quite often not possible because
inter-procedural analysis generates extremely complex expressions that are in the end intractable although
statically defined.

It is important to specify at this point that the scope of this paper encompasses techniques that have
been developed for the exploitation of loop parallelism in Fortran programs, mostly in a shared memory
environment. We believe that the SPMD model is easier to implement and that the global virtual address
space will become the dominant programming paradigm. Although Fortran has been for many years the
prevalent language for scientific programming leaving an enormous legacy we do not believe that it is going
to retain its dominance; however techniques developed for modern, irregular Fortran codes may be easily
applied in C or C++. We therefore think that the restrictions imposed in this paper will not result in any loss
of generality.

After briefly explaining some fundamental aspects of data dependences that are directly applicable to
run-time parallelization, in Section 3 we present an overall picture of the different approaches that researchers
have taken to run-time parallelization. In the next sections we first survey the most important techniques
used for partially parallel loops. Then we introduce the newer technique of speculative parallelization of
fully parallel loops and present some experimental results. In Section 7 we mention some related work in
parallel debugging and simulation. We conclude in Section 8 with our view of the future challenges that
must be addressed to transform run-time parallelization from an experimental to a standard technique.

2 Foundations

A loop can be executed in fully parallel form, without synchronization, if and only if the desired outcome
of the loop does not depend in any way upon the execution ordering of the data accesses from different
iterations. We will refer to such loops as doall loops. If, however, not all iterations can be executed
independently then a number of synchronizations are necessary to insure the correct execution order of
iterations and a sequentially consistent outcome of the computation. We will call such loops, partially
parallel loops, i.e., loops that need synchronizations. At one extreme we find completely sequential loops
which execute in a number of timesteps equal to their iteration space (critical path length equal to number
of iterations) and at the other extreme we find loops that need only one synchronization (critical path length
is 1).

So far, most static analysis techniques have focused on finding fully parallel loops because they scale well
with data set size and number of processors. Sometimes, when compilers detect a very regular dependence
pattern (with a constant dependence distance) the loop can be transformed into a doacross (pipelined)
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type of parallel execution that usually only pays off only in small systems where synchronization costs are
low. In principle the applicability of the doacross can be extended if the work to be synchronized has a
large granularity and therefore does not occur very often.

In the following subsections we review some basic principles for detecting doall fully parallel loops
(Section 2.1) and some techniques for eliminating loop carried data dependences which can enable full or
partial parallelism (Section 2.2). Section 2.3 presents techniques used in the parallelization of partially
parallel loops on multiprocessors. The collection of basic techniques presented in the next section is only
a subset of those available to modern restructuring compilers but includes the majority of those that are
important when static compiler analysis fails, i.e., for irregular, dynamic applications.

2.1 Fully Parallel (Doall) Loops

In order to determine whether or not the execution order of the data accesses affects the semantics of the loop,
the data dependence relations between the statements in the loop body must be analyzed [5, 24, 34, 47, 50].
There are three possible types of dependences between two statements that access the same memory location:
flow (read after write), anti (write after read), and output (write after write). Flow dependences are data
producer and consumer dependences, i.e., they express a fundamental relationship about the data flow in
the program. Anti and output dependences, also known as memory–related dependences, are caused by the
reuse of memory, e.g., program variables.

 i = 1, n/2

A(2*i) = A(2*i-1)
A(K(i)) = A(K(i)) + A(K(i-1))

   .................

(a)

do i=1, n

if 

endif
enddo

then
tmp = A(2*i)S1:

 (A(K(i)) .eq. .true.)  
A(2*i-1) = tmp

(c)

: S2

(b)

do 

enddo

          A(j) = A(j) + exp()

enddo
enddo

 j = 1, mdo 
do  i=1, n

S1:

Figure 1: Examples of loops with different data dependences

If there are flow dependences between accesses in different iterations of a loop, then the semantics of the
loop cannot be guaranteed if the loop is executed in fully parallel form. The iterations of such a loop are not
independent because values that are computed (produced) in some iteration of the loop are used (consumed)
during some later iteration of the loop. For example, the iterations of the loop in Fig. 1(a), which computes
the prefix sums for the array

�
, must be executed in order of iteration number because iteration ��� 1 needs

the value that is produced in iteration � , for 2 ������� .
Quite often, if there are no flow dependences between the iterations of a loop, then the loop may be

executed in fully parallel form. The simplest situation occurs when there are no anti, output, or flow
dependences. In this case, all the iterations of the loop are independent and the loop, as is, can be executed
in parallel. For example, there are no cross-iteration dependences in the loop shown in Fig. 1(b), since
iteration � only accesses the data in

�
	 ��� , for 1 ����� . If there are no flow dependences, but there are
anti or output dependences, then the loop must be modified to remove all these dependences before it can
be executed in parallel. Unfortunately, not all situations can be handled efficiently.

2.2 Parallelism Enabling Transformations

In order to remove certain types of dependences and execute the loop as a doall, two important and
effective transformations can be applied to the loop:
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� privatization

� reduction parallelization

Privatization can remove certain types of anti and output dependences by creating, whenever allowed,
for each processor cooperating on the execution of the loop, private copies of program variables that give
rise to anti or output dependences (see, e.g., [34, 10, 27, 28, 45, 46]). The loop shown in Fig. 1(b), which,
for even values of � , swaps

�
	 ��� with
��	 ��� 1 � , is an example of a loop that can be executed in parallel by

using privatization; the anti dependences between statement S1 of iteration � and statement S2 of iteration
��� 1, for 1 ��������� 2, can be removed by privatizing the temporary variable tmp.

Reduction parallelization is another important technique for transforming certain types of data dependent
loops for concurrent execution.

Definition: A reduction variable is a variable whose value is used in one associative operation of the form������������� , where � is the associative operator and � does not occur in � �!� or anywhere else in the loop.

Reduction variables are therefore accessed in a certain specific pattern (which leads to a characteristic data
dependence graph). A simple but typical example of a reduction is statement S1 in Fig. 1(c). The operator� , is in this case the � operator, the access pattern of array

�#"
: $ is read, modify, write, and the function

performed by the loop is to add a value computed in each iteration to the value stored in
�#"

: $ . This type of
reduction is sometimes called an update and occurs quite frequently in programs.

There are two tasks required for reduction parallelization: recognizing the reduction variable, and par-
allelizing the reduction operation. (In contrast, privatization needs only to recognize privatizable variables
by performing data dependence analysis, i.e., it is contingent only on the access pattern and not on the
operations.)

Parallel reductions algorithms have been developed for quite some time. If, as is frequently the case,
the reduction operation is commutative, then the implementation of such methods is less restrictive. One
typical method for the case of commutative reductions is to transform the do loop into a doall and enclose
the access to the reduction variable in an unordered critical section [15, 50] – a section of code guarded by
a lock–unlock operation which allows mutually exclusive operations on the shared variable. Drawbacks of
this method are that it is not always scalable and requires synchronizations which can be very expensive in
large multiprocessor systems.

A scalable method can be obtained by noting that a reduction operation is an associative recurrence
and can thus be parallelized using a recursive doubling algorithm [22, 23, 25]. In this case the reduction
variable is privatized in the transformed doall, and the final result of the reduction operation is computed
in an interprocessor reduction phase following the doall, i.e., a scalar is produced using the partial results
computed in each processor as operands for a reduction operation (with the same operator) across the
processors. We note here that if the reduction operation is commutative then it can be parallelized using
dynamically scheduled doalls (not only statically scheduled in monotonic order) and the cross-processor
merging phase can be done in any order. There is anecdotal evidence that most of the reductions encountered
in benchmarks are commutative.

Thus, the difficulty encountered by compilers in parallelizing loops with reductions arises not from
finding a parallel algorithm but from recognizing the reduction statements. So far this problem has been
handled at compile–time by syntactically pattern matching the loop statements with a template of a generic
reduction, and then performing a data dependence analysis of the variable under scrutiny to guarantee that
it is not used anywhere else in the loop except in the reduction statement.
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2.3 Partially Parallel Loops

Loops that cannot be transformed into an equivalent doall loop may still have their execution time
significantly reduced if their partial parallelism can be uncovered and exploited. Assuming that we represent
the dependence relation among iterations with a DAG (directed acyclic graph) we distinguish the following
cases:

1. The critical path length ( % �'& ) of the data dependence DAG is equal to the total number of iterations.
These loops can be considered sequential and are not well suited for multiprocessor parallelization.

2. The critical path length is less than the number iterations, i.e., partially parallel loops which require
% �'& synchronizations if they are executed on a multiprocessor.

The general technique for speeding up the execution of sequential and partially parallel loops is the use of
cross-iteration synchronizations to enforce flow dependences (Assuming that anti- and output- dependences
have been removed through some techniques such as privatization and reduction parallelization).

Sequential loops with constant dependence distance can be sped up by overlapping some segment of
their iterations. This technique has been well studied and is currently successfully applied for fine grain
optimizations, where synchronizations are inexpensive and the degree of parallelism supported by hardware
is small. Superscalar processors can software pipeline their loops if their associated dependence structure is
statically analyzable. In the case of irregular applications, where compiler analysis is insufficient, software
pipelining is not possible, because the safe initiation interval unknown and often variable.

Statically analyzable doacross loops have been exploited in multiprocessors through the use of
hardware or software synchronization primitives [31, 49]. The compiler can place post and await
instructions around the accesses that cause flow dependences. The speedup obtained with this technique is
upper bounded by the size of the loop iterations that may be overlapped and the overhead of synchronizations.

If the data access pattern of the loop is not statically available then synchronizations have to be employed
conservatively for all potential dependences and the resulting performance may not show any improvement
over serial execution.

Partially parallel loops can have their iteration space partitioned in a sequence of disjoint sets of
mutually independent iterations. These sets, also known as wavefronts, can be executed as chain of doalls
separated by global synchronizations. When a large variance of the size of the wavefronts causes a load
imbalance, the loop can be executed using post and await synchronizations. Of course this technique
requires a priori knowledge of the dependence DAG of the whole iteration space. A third technique,
which requires even more detailed information about the data dependences in the loop, is using mutually
independent threads of dependent iterations, which may have to be synchronized at different points.

The general parallelization methods for loops that cannot be transformed for doall execution require a
precise analysis and knowledge of the traversed access pattern. In the case of irregular, dynamic applications
this analysis cannot be performed at compile time because the information is simply not available – it exists
only at execution time. This is the reason behind the development of many run-time techniques for
optimization in general and parallelization in particular.

3 Approaches to Run-Time Parallelization

The last ten years have been increasingly productive in the development of run-time techniques for detecting
parallelism. We believe that this is, paradoxically, due to the continuously improving power of parallelizing
compilers which, after managing most of the ’well-behaved’ codes, failed when confronted with the newer,
sparse and dynamic simulation/computation programs.
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All run-time parallelization techniques developed so far have the common goal of detecting and enforcing
data dependences on shared data structures, mostly arrays. As previously mentioned, the inability of
the compiler to detect whether there are conflicting accesses is sometimes due to insufficiently powerful
algorithms but mostly because of insufficient static information. All run-time techniques monitor the access
pattern ’on-the-fly’, i.e., as it occurs, and check it against some previously collected access history. If an
out-of-order access has occurred then various actions are undertaken to insure proper parallel execution.
The implementation of these methods, regardless of their type and goal, have, with few exceptions ([37]),
relied on exclusive access (mutually exclusive) to some shared structure.

Based on the type of loop (doall or partially parallel) and how the access history is collected we
distinguish the following run-time techniques:

1. Techniques for parallelizing partially parallel loops

� Inspector/Executor methods� Speculative methods

2. Techniques for parallelizing fully parallel (doall) loops.

� Inspector/Executor methods� Speculative methods

In an inspector/executor method the access pattern is collected by first extracting an ’inspector’ loop
from the loop under test. This inspector loop traverses the access pattern without modifying the shared data
(wihtout side effects) before the actual computation takes place. On the other hand, speculative methods
perform the inspection of the shared memory accesses during the parallel execution of the loop under test.
It should be noted here that there are no known speculative techniques for extratcing the parallelism from a
partially parallel loop.

All run-time techniques must satisfy the requirement that their associated overhead can be amortized
and speedups can be obtained. Most methods cited in the literature which rely on the inspector/executor
strategy amortize their cost by reusing their collected parallelism information (execution schedule) over
many instantiations of the tested loop. This method, called schedule reuse has been successfully applied
by Joel Saltz em et al. for many applications where only a few data access patterns are generated during
program execution.

In the following sections we present an overview of the most representative techniques that have appeared
in the literature for partially parallel loops (Section 4) and fully parallel loops (Section 5). In Section 6 we
describe an overall framework for applying run-time parallelization in real applications.

Because the author believes that speculative methods are more general and can be applied to any program,
regardless of dynamic of its access patterns, this paper will describe them in more detail.

4 Run–Time Techniques for Partially Parallel Loops

Simple run-time techniques for using multi-version loops have been in production compilers for quite some
time. Many of today’s parallelizing compilers postpone part of their analysis for the run–time phase by
generating two-version loops [11]. These consist of an if statement that selects either the original serial
loop or its parallel version. The boolean expression in the if statement typically tests the value of a scalar
variable.

As mentioned in Section 2.3, most previous approaches to run–time parallelization have concentrated
on developing methods for constructing execution schedules for partially parallel loops, i.e., loops whose
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parallelization requires synchronization to ensure that the iterations are executed in the correct order.
Briefly, run–time methods for parallelizing loops rely heavily on global synchronizations (communication)
[13, 21, 26, 31, 35, 41, 43, 49], are applicable only to restricted types of loops [26, 41, 43], have significant
sequential components [35, 41, 43], and/or do not extract the maximum available parallelism (they make
conservative assumptions) [13, 26, 35, 41, 43, 49]. The only method that manages to combine the most
advantageous features is that of [37]. It does however rely on the availability of an inspector loop, which is
not a generally applicable technique.

A high level comparison of the various methods is given in Table 2.

obtains contains requires restricts privatizes
optimal sequential global type of or finds

Method schedule portions synchron loop reductions

Rauchwerger/Amato/Padua [37] Yes No No No P,R
Zhu/Yew [49] No1 No Yes2 No No
Midkiff/Padua [31] Yes No Yes2 No No
Krothapalli/Sadayappan [21] No3 No Yes2 No P
Chen/Yew/Torrellas [13] No1 ( 3 No Yes No No
Saltz/Mirchandaney [41] No3 No Yes Yes5 No
Saltz et al. [43] Yes Yes4 Yes Yes5 No
Leung/Zahorjan [26] Yes No Yes Yes5 No
Polychronopoulous [35] No No No No No
Rauchwerger/Padua [38, 39] No6 No No No P,R

Table 2: A comparison of run–time parallelization techniques for do loops. In the table entries, ) and * show that
the method identities privatizable and reduction variables, respectively. The superscripts have the following meanings:
1, the method serializes all read accesses; 2, the performance of the method can degrade significantly in the presence
of hotspots; 3, the scheduler/executor is a doacross loop (iterations are started in a wrapped manner) and busy
waits are used to enforce certain data dependences; 4, the inspector loop sequentially traverses the access pattern; 5,
the method is only applicable to loops without any output dependences (i.e., each memory location is written at most
once); 6, the method only identifies fully parallel loops.

4.1 Methods Utilizing Critical Sections

One of the first run–time methods for scheduling partially parallel loops was proposed by Zhu and Yew
[49]. It computes the wavefronts one after another using the following simple strategy. During a phase,
an iteration is added to the current wavefront if none of the data accessed in that iteration is accessed by
any lower unassigned iteration; the lowest unassigned iteration to access any array element is found using
atomic compare-and-swap synchronization primitives and a shadow version of the array. Midkiff and Padua
[31] extended this method to allow concurrent reads from a memory location in multiple iterations. Due to
the compare–and–swap synchronizations, this method runs the risk of a severe degradation in performance
for access patterns containing hot spots (i.e., many accesses to the same memory location). However, when
there are no hot spots and the critical path length is very small, this method should perform well. An
advantage of this method is reduced memory requirements: it uses only a shadow version of the shared array
under scrutiny whereas all other methods (except [35, 38, 39]) unroll the loop and store all the accesses to
the shared array.

Krothapalli and Sadayappan [21] proposed a run–time scheme for removing anti and output dependences
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from loops. Their scheme includes a parallel inspector that determines the number of accesses to each
memory location using critical sections as in the method of Zhu and Yew (and is thus sensitive to hotspots).
Using this information, for each memory location, they place all accesses to it in a dynamically allocated
array and then sort them according to iteration number. Next, the inspector builds a dependence graph
for each memory location, dynamically allocates any additional global storage needed to remove all anti
and output dependences (using renaming), and explicitly constructs the mapping between all the memory
accesses in the loop and the storage, both old and new, thereby inserting an additional level of indirection
into all memory accesses. The loop is executed in parallel using synchronization (full/empty bits) to enforce
flow dependences. To our knowledge, this is the only run–time privatization technique except [38, 39].

Chen, Yew, and Torrellas [13] proposed an inspector that has a private phase and a merging phase. In the
private phase, the loop is chunked and each processor builds a list of all the accesses to each memory location
for its assigned iterations; read accesses to a memory location are serialized. Next, the lists for each memory
location are linked across processors using a global Zhu/Yew algorithm [49]. Their scheduler/executor uses
doacross parallelization [41], i.e., iterations are started in a wrapped manner and processors busy wait
until their operands are ready. Although this scheme potentially has less communication overhead than [49],
it is still sensitive to hot spots and there are cases (e.g., doalls) in which it proves inferior to [49]. For
example, consider a loop with % �'&+��� and dependence distance � as well, i.e., in which each processor’s
iterations access the same set of ��� � distinct memory locations. In this case the new inspector requires time,-" � � $ , and the original Zhu/Yew scheme uses time

,-" � 2 ����$ . Although this example may appear a bit
contrived, it is actually a quite realistic possibility. Consider for example a nested loop in which the inner
loop is fully parallel and moreover, it always accesses the same memory locations. Thus, if, as would be
natural, each processor were assigned one iteration of the outer loop, we would have precisely the situation
described above.

4.2 Methods for Loops Without Output Dependences

The problem of analyzing and scheduling loops at run–time has been studied extensively by Saltz et al.
[7, 41, 42, 43, 48]. In most of these methods, the original source loop is transformed into an inspector,
which performs some run–time data dependence analysis and constructs a (preliminary) schedule, and an
executor, which performs the scheduled work. The original source loop is assumed to have no output
dependences. In [43], the inspector constructs stages that respect the flow dependences by performing a
sequential topological sort of the accesses in the loop. The executer enforces any anti-dependences by
using old and new versions of each variable. Note that the anti dependences can only be handled in this
way because the original loop does not have any output dependences, i.e., each variable is written at most
once in the loop. The inspector computation (the topological sort) can be parallelized somewhat using the
DOACROSS parallelization technique of Saltz and Mirchandaney [41], in which processors are assigned
iterations in a wrapped manner, and busy-waits are used to ensure that values have been produced before
they are used (again, this is only possible if the original loop has no output dependences).

Leung and Zahorjan [26] have proposed some other methods of parallelizing the inspector of Saltz et
al. These techniques are also restricted to loops with no output dependences. In sectioning, each processor
computes an optimal parallel schedule for a contiguous set of iterations, and then the stages are concatenated
together in the appropriate order. Thus sectioning will usually produce a suboptimal schedule since a new
synchronization barrier is introduced into the schedule for each processor. In bootstrapping, the inspector
of Saltz et al. (i.e., the sequential topological sort) is parallelized using the sectioning method. Although
bootstrapping might not optimally parallelize the inspector (due to the synchronization barriers introduced
for each processor), it will produce the same minimum depth schedule as the sequential inspector of Saltz
et al.
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4.3 A Scalable Method for Loop Parallelization

All previously described methods either perform accesses in critical sections or have a purely sequential phase
(e.g., a topological sort), which degrade the desired scalability characteristics of any run-time parallelization
technique. In [36, 37] a technique is presented in which all its 3 phases, inspector, scheduler and executor,
are parallel and scale well with the number of processors.

The inspector phase records the memory references to each array element under test in a per processor
private data structure and sorts them according to iteration number and type of access (read or write). The
parallel sorting operation is implemented as a bucket sort because the range of the accesses is known (they
are indexes in an array). The obtained per processor information is then merged to form a global structure
containing the dependence graph (DAG) for each memory element referenced in the loop.

In the next phase a quick parallel inspection of the individual DAG’s finds all read-only, independent, pri-
vatizable and reduction operands. Since these locations do not introduce any loop-carried data dependences
they are removed form the global data structure.

Finally, the scheduler cross-references data address information with iteration number in topological
order and generates sets of independent iterations (wavefronts). The executor then schedules these inde-
pendent iterations on the machine’s processors. The scheduler and executor can work in tandem or in
an interleaved mode increasing the efficiency of the overall process. Alternatively, the method provides
sufficient information to generate independent threads of execution (chains of dependent iterations) that
may need only occasional synchronizations.

This method incorporates two powerful transformations, privation and reduction parallelization, per-
forms all phases in a scalable manner and can generate either wavefronts or threads. The iteration schedule
can be either pre-computed or overlapped (pipelined) with the actual loop execution. We should remark
however that this technique can be applied only to loops from which a side-effect free inspector can be
extracted.

4.4 Other methods

In contrast to the above methods which place iterations in the lowest possible wavefront, Polychronopolous
[35] gives a method where wavefronts are maximal sets of contiguous iterations with no cross-iteration
dependences. Dependences are detected using shadow versions of the variables, either sequentially, or in
parallel with the aid of critical sections as in [49].

Another significant contribution to this field is the work of Nicolau [32]. Run-time disambiguation
has been recently used in optimizing codes for instruction level parallelism [18, 17]. Their idea is to
speculatively execute code very aggressively (out of order) despite the fact that some memory locations
(few) could cause unsatisfied data dependences. The offending addresses which are used out of order are
stored until all potential hazards have been cleared. If an error is detected repair code will backtrack and
restart from that point.

5 Run-Time Techniques for Fully Parallel (Doall) Loops

Most approaches to run–time parallelization have concentrated on developing methods for constructing
execution schedules for partially parallel loops, i.e., loops whose parallelization requires synchronization to
ensure that the iterations are executed in the correct order. Note that the parallelism available in partially
parallel loops does not necessarily scale with increased data set size. Indeed, there is anecdotal evidence
that the critical path length actually increases with data size which means that scalable speedups may not
be achievable, that is, using more processors may not always yield higher speedups.
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The only class of loops that can almost always offer scalable speedups are the fully parallel loops. The
more work (iterations) a doall loop executes, the more processors can be employed and a higher speedup
can be obtained. Because there is experimental evidence that many important loops are indeed fully parallel
[8], we believe that they represent the biggest potential payoff in program parallelization. As mentioned
before, exploiting the parallelism in irregular applications requires the application of run-time techniques
whose overhead needs to be minimized. Building an execution schedule for a partially parallel loop requires
fundamentally much more run-time collected information and analysis than does detecting full parallelism.
From this fact alone we can conclude that the run-time overhead of doall detection will be lower than that
of partially parallel loops.

All the techniques surveyed in the previous section use some form of the inspector/executor model. Of
these, only the method proposed by [37] does not make use of critical sections. Unfortunately the distribution
of a loop into an inspector and an executor is often not advantageous (or even possible). If the address
computation of the array under test depends on the actual data computation (they form a dependence cycle),
as exemplified in Fig. 1(a), then the inspector becomes both computationally expensive and has side–effects.
This means that shared arrays would be modified during the execution of the inspector loop and saving the
state of these variables would be required – making the inspector equivalent to the loop itself. In addition,
the desirable goal of exploiting coarse–grain parallelization, i.e., at the level of large complex loops, makes it
even less likely that an appropriate “inspector” loop can be extracted. Furthermore, if the goal is to construct
an execution schedule for a partially parallel loop containing address-data cycles (as opposed to detecting
full parallelism) then the inspection/collection of its access pattern cannot possibly be executed in parallel
because it may contain loop-carried dependences. Thus, the inspector/executor approach is not a generally
applicable method, i.e., it is limited to special cases.

We now describe the only technique known to us that is designed to detect only doall loops and can be
used both in the inspector/executor framework as well as in a speculative mode and can be therefore applied
to any loop type. Because of the author’s opinion that speculative doall parallelization can be the basis of
run-time parallelization we present it in more detail the previously described methods.

First we describe the LRPD Test [40, 38], an algorithm that can detect fully parallel loops and that
can validate two of the most effective parallelism enabling transformations: privatization and reduction
parallelization. Then we show how the test can be used both speculatively as well as an inspector for
parallelizing loops in real applications. The section concludes with a few experimental results.

5.1 The LRPD Test

In this section we describe an efficient run–time technique that can be used to detect the presence of cross–
iteration dependences in a loop access pattern. If there are any such dependences, then this test will not
identify them, it will only flag their existence. In addition, the test can check if a shared variable is safely
privatizable or if it is participating in a reduction operation. We note that the test need only be applied to
those scalars and arrays that cannot be analyzed at compile–time.

An important source of ambiguity that cannot be analyzed statically and can potentially generate overly
conservative data dependence models is the run–time equivalent of dead code. A simple example is when
a loop first reads a shared array element into a local variable but then only conditionally uses it in the
computation of other shared variables. If the consumption of the read value does not materialize at run–
time, then the read access did not in fact contribute to the data flow of the loop and therefore could not
have caused a dependence. Since predicates seldom can be evaluated statically, the compiler must be
conservative and conclude that the read access causes a dependence in every iteration of the loop. The
LRPD test eliminates such false dependences by checking only the dynamic data dependences caused by
the actual cross–iteration flow of values stored in the shared arrays, thus potentially increasing the number
of loops found parallel. This is accomplished using a technique called dynamic dead reference elimination
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which is explained in detail following the description of the test.
In the following description, the test is applied to the access pattern of a shared array

�
whose dependence

behavior could not be computed at compile time.

The Lazy (value–based) Privatizing doall Test (LPD Test)

1. Marking Phase. (Performed either during the speculative parallel execution of the loop or during
the parallel execution of the inspector loop.) For each shared array

��	
1 : ./� whose dependences

cannot be determined at compile time, declare read and write shadow arrays,
�10�	

1 : .2� and
�435	

1 : .2� ,
respectively. In addition, declare a shadow array

�16278	
1 : .2� that will be used to flag array elements that

cannot be validly privatized. Initially, the test assumes that all array elements are privatizable, and if
it is found in any iteration that the value of an element is used (read) before it is redefined (written),
then it will be marked as not privatizable. The shadow arrays

�10�9:�13
, and

�1627
are initialized to zero.

During each iteration of the loop, all definitions or uses of the values stored in the shared array
�

are
processed:

(a) Definitions (done when the value is written): set the element in
�13

corresponding to the array
element that is modified (written).

(b) Uses (done when the value that was read is used): if this array element is never modified
(written) in this iteration, then set the corresponding element in

�40
. If the value stored in this

array element has not been written in this iteration before this use (read access), then set the
corresponding element in

�46/7
, i.e., mark it as not privatizable.

(c) Count the total number of write accesses to
�

that are marked in this iteration, and store the
result in ;=<?> "=� $ , where � is the iteration number.

2. Analysis Phase. (Performedeither after the speculative parallel execution or after the parallel execution
of the inspector.) For each shared array

�
under scrutiny:

(a) Compute (i) ;@< "@� $ ��A ;@< > "@� $ , i.e., the total number of definitions (writes) that were marked
by all iterations in the loop, and (ii) ;=B "@� $ � . C�B "@�43?	

1 : .2��$ , i.e., the total number of marks
in

� 3 	
1 : ./� .

(b) If DE��F "@�135	
: �'G �10H	

: ��$ ,1 i.e., if the marked areas are common anywhere, then the loop is not a
doall and the phase ends. (Since we define (write) and use (read, but do not define) values
stored at the same location in different iterations, there is at least one flow or anti dependence.)

(c) Else if ;=< "@� $ � ;@B "@� $ , then the loop is a doall (without privatizing the array
�

). (Since we
never overwrite any memory location, there are no output dependences.)

(d) Else if DE��F "@� 3 	
: �IG � 6/7 	

: ��$ , then the array
�

is not privatizable. Thus, the loop, as executed, is
not a doall and the phase ends. (There is at least one iteration in which some element of

�
was used (read) before it was been modified (written).)

(e) Otherwise, the loop was made into a doall by privatizing the shared array
�

. (We remove all
memory–related dependences by privatizing this array.)

Dynamic dead reference elimination. We now describe how the marking of the read and private shadow
arrays,

�40
and

�1627
, can be postponed until the value of the shared variable is actually used (Step 1(b)).

More formally, the references we want to identify are defined as follows. As mentioned above, if a value
stored in a shared–memory location is read into a private variable and only conditionally used then it may
not introduce a data dependence if the use does not materialize at run–time. In order to recognize statically
which read references may not affect the data flow at run–time we first define a dynamic dead read reference:

1 J2K�L returns the “OR” of its vector operand’s elements, i.e., J2K!L�MON�P 1 : K�QSR'TUMON�P 1 Q VWN�P 2 QXVZY[Y=Y[VWN�P\K�Q]R .
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  K(1:5) = (1 2 3 4 1)
L(1:5) = (2 2 4 4 2)

do i=1, 5
z = A(K(i))

B1(1:5) = (1 0 1 0 1)

if 

(a)

(B1(i) .eq. .true.) then
A(L(i)) = z +C(i)

endif
enddo

(B1(i) .eq. .true.) then

A(L(i)) = z +C(i)
endif

enddo

if 

do 

(b)

i=1, 5
markread(K(i))
z = A(K(i))

markwrite(L(i))

(B1(i) .eq. .true.) then
z = A(K(i))

A(L(i)) = z +C(i)
endif

if 

enddo

markread(K(i))

do i=1, 5

(c)

markwrite(L(i))

original shadow arrays
PD test 1 2 3 4 5 ^`_ ^�abdc

0 1 0 1 0 3 2b�e
1 1 1 1 0b�f=g
0 0 0 0 0bdc M : REh bde M : R 0 1 0 1 0b c M : REh bdfig M : R 0 1 0 1 0

(d)

new shadow arrays
LPD test 1 2 3 4 5 ^`_ ^`ab�c

0 1 0 1 0 3 2bde
1 0 1 0 0bdfig
0 0 0 0 0b�c M : RIh bde M : R 0 0 0 0 0b c M : RIh bdfig M : R 0 0 0 0 0

(e)

Figure 2: The transformation of a do loop (a), using the the test w/o dynamic dead reference elimination (b), and
the lazy version (with dynamic dead reference elimination (c). The markwrite (markread) operation marks the
indicated element in the shadow array j5k ( j5l and j5mon ) according to the criteria given in Step 1(a) (1(b)) of the LPD
test. Since dynamic dead read references are not marked in the LPD test, the array A fails the PD test and passes the
LPD test, as shown in (d) and (e), respectively.

Definition A dynamic dead read reference is a read access of a shared variable that both
(a) does not contribute to the computation of any other shared variable, and
(b) does not control (predicate) the references to other shared variables.

The value obtained through a dynamic dead read does not contribute to the data flow of the loop.
Ideally, such accesses should not introduce false dependences in either the static or the run–time dependence
analysis. If it is possible to determine the dead references at compile time then we can just ignore them
in our analysis. Since this is not generally possible (control flow could be input dependent) the compiler
should identify the references that have the potential to be unused and insert code to solve this problem
at run–time. In Fig. 2 we give an example where the compiler can identify such a situation by following
the def–use chain built by using array names only. To avoid introducing false dependences, the marking
of the read shadow array is postponed until the value that is read into the loop space is indeed used in the
computation of other shared variables. In essence we are concerned with the flow of the values stored rather
than with their storage (addresses). We note that if the search for the actual use of a read value becomes too
complex then it can be stopped gracefully at a certain depth and a conservative marking of the shadow array
can be inserted (on all the paths leading to a possible use).

As can be observed from the example in Fig. 2, this method allows the LPD test to qualify more loops for
parallel execution then would be otherwise possible by just marking all memory references. It is important
to note that this technique may be applicable in an inspector if it contains all the necessary predicates but is
always possible in a speculative execution.

In particular, after marking and counting we obtain the results depicted in the tables. The loop fails the
test without dynamic dead reference elimination since

�13�"
: $pG �40�"

: $ is not zero everywhere (Step 2(b)).
However, the loop passes the LPD test as

�135"
: $qG �10 "

: $ is zero everywhere, but only after privatization,
since ;@< "@� $Wr� ;@B "=� $ and

�13�"
: $qG �1627�"

: $ is zero everywhere.
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5.2 The LRPD test: extending the LPD test for reduction validation

As mentioned in Section 2, there are two tasks required for reduction parallelization: recognizing the
reduction variable, and parallelizing the reduction operation. Of these, we focus our attention on the former
since, as previously noted, techniques are known for performing reduction operations in parallel. So far
the problem of reduction variable recognition has been handled at compile–time by syntactically pattern
matching the loop statements with a template of a generic reduction, and then performing a data dependence
analysis of the variable under scrutiny to validate it as a reduction variable [50]. There are two major
shortcomings of such pattern matching identification methods.

1. The data dependence analysis necessary to qualify a statement as a reduction cannot be performed
statically in the presence of input–dependent access patterns.

2. Syntactic pattern matching cannot identify all potential reduction variables (e.g., in the presence of
subscripted subscripts).

Below we describe how potential reductions can be validated at run-time. Techniques for statically
finding more potential reductions are described in more detail in [40].

A potential reduction statement is assumed to syntactically pattern match the generic reduction template���s�t�u� �!� ; reduction statements that do not meet this criterion are treated in [40]. The reduction can be
validated by checking at run-time that the reduction variable � satisfies the definition given in Section 2, i.e.,
that � is only accessed in the reduction statement, and that it does not appear in � �!� . In addition, if � is a
reduction variable in several potential reduction statements in the loop, then it must also be verified that each
of these reduction statements have the same operator. The need for such a test could arise if the reduction
variable is an array element accessed through subscripted subscripts and the subscript expressions are not
statically analyzable. For example, although statement S3 in the loop in Fig. 3(a) matches a reduction
statement, it is still necessary to prove that the elements of array A referenced in S1 and S2 do not overlap
with those accessed in statement S3, i.e., that: v " �=$�r�sw "yx $ and z " �i$Wr�{w "Ox $ , for all 1 �|� 9}x �|� . Thus,
the LRPD test must check at run–time that there is no intersection between the references in S3 and those
in S1 and/or S2; in addition it will be used to prove, as before, that any cross–iteration dependences in
S1 and S2 are removed by privatization. To test this new condition we use another shadow array

�16 ~
to

flag the array elements that are not valid reduction variables. Initially, all array elements are assumed to be
valid reduction variables, i.e.,

�16 ~8	
: � �{� D & . � . In the marking phase of the test, i.e., during the speculative

parallel execution of the loop or in the inspector loop, any array element defined or used outside the reduction
statement is invalidated as a reduction variable, i.e., its corresponding element in

� 6�~
is set to true. As

before, after the speculative parallel execution or after the inspector loop is executed, the analysis phase of
the test is performed. An element of

�
is a valid reduction variable if and only if it was not invalidated

during the marking phase, i.e., it was not marked in
�16 ~

as not a reduction variable for any iteration. The
other shadow arrays

�1627
,
�13

and
�40

are initialized, marked, and interpreted just as before.
The LRPD test can also solve the case when the exp part of the RHS of the reduction statement contains

references to the array
�

that are different from the pattern matched LHS and cannot be statically analyzed.
To validate such a statement as a reduction we must show that no reference in exp overlaps with those of
the LHS. This is done during the marking phase by setting an element of

�46�~
to true if the corresponding

element of
�

is referenced in exp.
In summary, the LRPD test is obtained by modifying the LPD test. The following step is added to the

Marking Phase.

1(d) Definitions and uses: if a reference to
�

is not one of the two known references to the reduction
variable (i.e., it is outside the reduction statement or it is contained in exp), then set the corresponding
element of

� 6�~
to true (to indicate that the element is not a reduction variable). (See Fig. 3(a) and

(b).)

14



S2:           ............  =  A(L(i))

A(R(i)) = A(R(i)) + exp()S3:

i = 1, ndoall 
markwrite(K(i))
markredux(K(i))

markread(L(i))
markredux(L(i))

markwrite(R(i))

enddoall

(b)

do i = 1, n
S1:         A(K(i)) = .......
S2:           ............  =  A(L(i))
S3: A(R(i)) = A(R(i)) + exp()

enddo

(a)

markwrite(R(i))

A_nx(R(i)) = ’*’
endif
markread(X(i))

else

endif
S2:         A(S(i)) =  A(S(i)) + exp()

S1:         A(K(i)) = .......

i = 1, n

 then

doall 

A(R(i)) = A(R(i)) + exp(A(X(i)))
markredux(X(i))

(d)

if (A_nx(R(i)) .ne. ’*’) markredux(R(i))

(A_nx(S(i)) .ne. ’+’) markredux(S(i))if 

A_nx(S(i)) = ’+’
else

enddoall

S1:
markwrite(S(i))

enddo

do i = 1, n

S2:         A(R(i)) = A(R(i)) + exp()
S1:         A(S(i)) = A(S(i)) + exp(X(i))

(c)

A_nx

if 

if 

(:) = 0

(A_nx(R(i)) .ne. 0) 

(A_nx(S(i)) .ne. 0)  then

Figure 3: The transformation of the do loops in (a) and (c) is shown in (b) and (d), respectively. The markwrite
(markread) operation marks the indicated element in the shadow array j5k ( j5l and j+m:n ) according to the criteria
given in Step 1(a) (1(b)) of the LPD test. The markredux operation sets the shadow array element of A nx to true.
In (d), the type of the reduction is tested by storing the operator in A nx.

In the Analysis Phase, Steps 2(d) and 2(e) are replaced by the following.

2(d � ) Else if DE��F "@�135	
: ��G �1627�	

: ��G �16 ~I	
: ��$ , then some element of

�
written in the loop is neither a reduction

variable nor privatizable. Thus, the loop, as executed, is not a doall and the phase ends. (There
exist iterations (perhaps different) in which an element of

�
is not a reduction variable, and in which

it is used (read) and subsequently modified.)

2(e � ) Otherwise, the loop was made into a doall by parallelizing reduction operations and privatizing the
shared array

�
. (All data dependences are removed by these transformations.)

5.3 Complexity and Implementation Notes

Private shadow structures. The LRPD test can take advantage of the processors’ private memories by
using private shadow structures for the marking phase of the test. Then, at the conclusion of the private
marking phase, the contents of the private shadow structures are merged (conceptually) into the global
shadow structures. In fact, using private shadow structures enables some additional optimization of the
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LRPD test as follows. Since the shadow structures are private to each processor, the iteration number can be
used as the “mark.” In this way, no re–initialization of the shadow structures is required between successive
iterations, and checks such as “has this element been written in this iteration?” simply require checking
if the corresponding element in

�13
is marked with the iteration number. Another benefit of the iteration

number “marks” is that they can double as time–stamps, which are needed for performing the last–value
assignment to any shared variables that are live after loop termination.

A processor–wise version of the LRPD test. The LRPD Test determines whether a loop has any cross–
iteration data dependences. It turns out that essentially the same method can be used to test whether the
loop, as executed, has any cross–processor data dependences [1]. The only difference is that all checks in
the test refer to processors rather than to iterations, i.e., replace “iteration” by “processor” in the description
of the LRPD test so that all iterations assigned to a processor are considered as one “super–iteration” by the
test. Note that a loop that is not fully parallel could potentially pass the processor–wise version of the LRPD
test because data dependences among iterations assigned to the same processor will not be detected. This is
acceptable (even desirable) as long each processor executes its assigned iterations in increasing order using
static scheduling. The storage requirements for the shadow structures are at most 4 bits per element.
Complexity. If the test uses private shadow structures then the time complexity of the LRPD test is� " � 9 . 9 D 9 � $ � ,-" ��D�� � � log � $ , where � is the number of processors, � is the total iteration count of the
loop, . is the number of elements in the shared array, and D is the (maximum) number of accesses to the
shared array in a single iteration of the loop.

The space requirements of the test are
,t" � .�$ (more precisely, 4 fields per shadowed element). In the

processor-wise version the test requires at most 4 bits per elements on each processor. If .t����D8� � , then
the number of operations in the LRPD test does not scale since each processor must always inspect every
element of its private shadow structure when transferring it to the global shadow structure (even though each
processor is responsible for fewer accesses as the number of processors increases). Using “shadow” hash
tables (instead of arrays), each processor will only have private shadow copies of the array elements accessed
in iterations assigned to it. The storage requirements become in this case

,t" ��D8� � $ for each processor or,-" ��D�$ in total and the time complexity of the test becomes
,-" ��D�� � � log � $ . A more precise analysis can

be found in [40].

5.4 Inspector/Executor vs. Speculative Strategies

So far the only run-time test that can be performed in either inspector/executor or speculative mode is
the LRPD test which checks exclusively for full parallelism. Each strategy has its own advantages and
disadvantages and the choice between the two is dictated by the particular case at hand.

In an inspector/executor strategy a proper inspector loop must be extracted from the original loop, which
is then instrumented for marking, i.e., for the collection of the data’s access history. An inspector exists
only if there are no cycles between data and address computation - which is not the case for many dynamic
applications. After executing the inspector (in parallel, at run-time) an analysis of the shadow structures
reveals whether the actual loop is fully parallel. A compiler–generated two version loop can then be executed
accordingly.

If a proper inspector cannot be found then the only choice is speculative execution. This approach
requires the compiler to generate a marking instrumentation of the original loop in order to collect the access
history in the shadow structures. The analysis phase will be performed after the speculative execution of
the parallelized loop under test. However, because the speculative parallel execution may fail and shared
data may have been modified, the compiler must also generate code for saving state (before execution) and
restoring state (after failure). Just as in the inspector/executor mode, a serial version is available if the loop
is found not to be a doall.
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Benchmark2 Experimental Results
Subroutine Tested Description of Loop Inspector
Loop Technique Speedup (% of sequential execution time of program) (computation)

MDG 14 processors privatization
INTERF speculative 11.55 doall accesses to a privatizable vector guarded data accesses
loop 1000 insp/exec 8.77 privat by loop computed predicates (92% �E�O��� ) branch predicate
BDNA 14 processors privatization
ACTFOR speculative 10.65 doall accesses privatizable array indexed by a data accesses
loop 240 insp/exec 7.72 privat subscript array computed inside loop (32% � �O��� ) subscript array
TRACK accesses array indexed by subscript array
NLFILT 8 processors doall computed outside loop, access pattern not applicable
loop 300 speculative 4.21 guarded by loop computed predicates (39% � �O��� )
ADM accesses privatizable array through aliases,
RUN 14 processors doall array re–dimensioned, access not applicable
loop 20 speculative 9.01 privat pattern control flow dependent (44% � �O��� )

Table 3: Summary of Experimental Results.

The decision of whether to use an inspector/executor (if at all possible) or a speculative approach is
dictated by the overall potential performance gains. In Section 6 we will sketch a general performance
driven strategy for run-time parallelization.

5.5 Experimental Results

This section describes some experimental results obtained on two modestly parallel machines with 8 (Alliant
FX/80 [3]) and 14 processors (Alliant FX/2800 [4]) using a Fortran implementation of the LRPD test.

Four do loops from the PERFECT Benchmarks [6] that could not be parallelized by any available
compiler were considered. The results are summarized in Table 3. For each loop, the type of test applied
is noted: doall indicates cross–iteration dependences were checked (Lazy Doall (LD) test), privat indicates
privatization was checked (LRPD test). For each method applied to a loop, the speedup obtained is reported.
If the inspector/executor version of the LRPD test was applied, the computation performed by the inspector
is shown in the table: the notation privatization indicates the inspector verified that the shared array was
privatizable and then dynamically privatized the array for the parallel execution, branch predicate and
subscript array mean that the inspector computed these values.

In addition to the summary of results given in Table 3, Figures 4 through 5 show the speedup measured
for each loop as a function of the number of processors used. For reference, these graphs show the ideal
speedup, which was calculated using an optimally parallelized (by hand) version of the loop. In cases
where extraction of a reduced inspector loop was impractical because of complex control flow and/or
inter–procedural problems, we only applied the speculative methods.

The graphs show that the speedups scale fairly well with the number of processors and are a very
significant percentage of the ideal speedup. We note that in the examples shown the speculative strategy
gives superior speedups versus the inspector/executor method.

It should be noted that the loop from TRACK is parallel for only 90% of its invocations. In the cases
when the test failed, we restored state, and re–executed the loop sequentially. The speedup reported includes
both the parallel and sequential instantiations (Fig. 5).

2All benchmarks are from the PERFECT Benchmark Suite
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Figure 4: Exeprimental Speedup.

Figure 5: Exeprimental Speedup.

6 A Framework for Implementing Run-time Testing

Consider a do loop for which the compiler cannot statically determine the access pattern of a shared
array

�
that is referenced in the loop. Instead of generating pessimistic, sequential code when it cannot

unequivocally decide whether the loop has any intrinsic parallelism the compiler can choose to use a run-
time parallelization technique in the hope that it will pay off. It should be noted that regardless of the
method chosen the decision of applying a run-time test is in itself speculative: there is no assurance that a
performance gain (parallelism) can be obtained and there is always an associated run-time overhead. The
only way to minimize the potential loss is to: (a) improve the odds of predicting correctly and (b) reduce
the run-time overhead.

In this section we give a brief outline of how a compiler might proceed when presented with candidate
loop for run-time parallelization.

1. At Compile Time.

(a) A cost/benefit analysis is performed using both static analysis and run–time collected statistics
to determine whether the loop should be:

(i) executed serially (because of the little probable parallelism)

(ii) use a run-time technique for partially parallel loops (if statistics or some other analytical
heuristics indicates moderate parallelism)

(iii) test only for full parallelism
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(b) Decide based on (approximate) statical analysis whether privatization, reduction or any other
loop transformation may increase the probability for successful parallelization.

(c) Code is generated for:� the collection of the access history as required for the chosen technique� the potential sequential re–execution of the loop (in the case of speculative execution)� any necessary checkpointing/restoration of program variables (in the case of speculative
execution)

2. At Run–Time.

(a) Checkpoint if necessary, i.e., save the state of program variables.

(b) Execute selected run-time technique in parallel (which may require a sequential re-execution of
the loop)

(c) Collect statistics for use in future runs, and/or for schedule reuse in this run.

As we have previously mentioned, run-time tests are alwaysa ’gamble’. Collecting statistics will become
part and parcel of this technique just as branch-prediction has become a classic technology. Complementary
to the use of statistics is the reduction of the intrinsic run-time overhead of the employed methods. This can
be achieved in two ways:

� Choice of the appropriate run-time technique based on code specifics and machine architecture, and

� Use of the partial information obtained by the compiler (by itself insufficient for static parallelization)
to reduce the amount of information that must be collected at run time.

6.1 An Example

Because of its relative simplicity we have chosen to illustrate in Fig. 6 the code generated by a compiler for
a simplified version of the speculative LRPD test. In this example, iteration numbers are used as “marks”
in private shadow arrays. If the speculative execution of the loop passes the analysis phase, then the scalar
reduction results are computed by performing a reduction across the processors using the processors’ partial
results. Otherwise, if the test fails, the loop is re–executed sequentially.

7 Related Work

7.1 Race Detection for Parallel Program Debugging

A significant amount of work has been invested in the research of hazards (race conditions)and access
anomalies for debugging parallel programs. Generally, access anomaly detection techniques seek to identify
the point in the parallel execution at which the access anomaly occurred. Padua et al. [2, 16] discuss methods
that statically analyze the source program, and methods that analyze an execution trace of the program.
Since not all anomalies can be detected statically, and execution traces can require prohibitive amounts of
memory, run–time access anomaly detection methods that minimize memory requirements are desirable
[44, 14, 33]. In fact, a run–time anomaly detection method proposed by Snir, and optimized by Schonberg
[44] and later by Nudler [33] bears similarities to a simplified version of the LRPD test presented in
Section 5.1 (i.e., a version without privatization). In essence, all nodes in an arbitrary concurrency graph
(a DAG) with nested forks and joins is labeled in such a way as to uniquely reflect the possibility of a
race condition, i.e., concurrent read and/or write accesses to a shared variable. At execution time the race
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do 
S1:              A(R(i)) = A(R(i)) + exp()
S2:                 .........    = A(L(i))

i=1, n
               A(1:m)dimension 

C            original loop

enddo

(a)

A(m), pA(m,procs)

i=1,n
private p 
p = get_proc_id()

if

pA_w(R(i), p) = i
S1:              pA(R(i), p) = pA(R(i), p) + exp()

(pA_w(L(i), p) .ne. i)
pA_r(L(i), p) = i

pA_nx(L(i), p) = .true.
S2:                ...........       = pA(L(i), p)

enddoall

C            Marking Phase
dimension 
dimension 
dimension 
dimension 

               Initialize(pA, pA_w, pA_r, pA_nx)

               

doall 

(c)

               A_w(m), pA_w(m,procs)
               A_r(m), pA_r(m,procs)
               A_nx(m), pA_nx(m,procs)

(b)

C            Analysis Phase
doall i=1,n

enddoall

A_w(1:m) = pA_w(1:m,i)
A_r(1:m) = pA_r(1:m,i)
A_nx(1:m) = pA_nx(1:m,i)

result = test(A_w, A_r, A_nx)
if (result .eq. pass) then

C            compute reduction
doall 

enddoall

i=1, m
if (A_nx(i) .eq. .false.) 

A(i) = sum (pA(i, 1:procs))

C            execute the loop sequentially
else

endif

Figure 6: The simplified code generated for the do loop in (a) is shown in (b) and (c). Privatization is not tested
because of a read before a write reference

detection mechanism maintains an access history of the shared locations and is checked ’on the fly’ for an
illegal reference sequence, i.e., a race condition. However, Schonberg’s method requires a large amount of
storage for recording the access history, i.e., O(T) for each monitored variable, where T is the number of
dynamically concurrent threads. Viewed in the framework of the LRPD test, a separate shadow array for
each iteration in a loop must be maintained. In 1991 Mellor-Crummey [29] improved this technique by
dramatically reducing the memory requirements; the maximum accesses history storage is O(N), where N is
the maximum level fork-join nesting. Since, in current systems at most 2 levels of parallelism are supported,
this memory overhead seems quite manageable, making the technique more attractive to race detection.
The execution time overhead is still very high, because every reference monitored has to be logged and
checked against the access history in a critical section. In [30] an order of magnitude increase in execution
time of instrumented codes is reported for experiments on a sequential machine. Even after reducing the
shadowed references through compile time analysis, the time expansion factor remains around 5. The need
for critical sections for the parallel execution of this experiment would only add to the run-time overhead of
this technique. While the method may not be suitable for performance–oriented parallelization of doall
loops, it is a clever technique for debugging arbitrary fork-join parallelism constructs.
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7.2 Optimistic Execution

A concept related to the speculative approach described in this paper is virtual time first introduced in [19]
and defined as " ... paradigm for organizing and synchronizing distributed systems.... [It] provides a flexible
abstraction of real time in much the same way that virtual memory provides an abstraction of real memory. It
is implemented using the Time Warp mechanism, a synchronization protocol distinguished by its reliance on
look-ahead rollback, and by its implementation of rollback via antimessages." The granularity and overhead
associated with this method seem to make it more applicable to problems such as discrete event simulation
and database concurrency control rather than loop parallelization. In fact this concept has been applied in
database design.

8 Future Directions

In this paper we have considered the problem of parallelizing statically intractable loops at run–time and
have summarized some of the major approaches to solve it. It is clear that the rate at which new run-time
techniques have been proposed has been constantly increasing. As mentioned in Section 1.1, the motivation
is, paradoxically, the increased static analysis power of parallelizing compilers. As modern, sparse codes
are added to the various collected benchmark suites it has become more evident that static compilation
has fundamental limits and that new techniques are needed if parallel processing is to succeed. Because
the hardware for parallel systems has recently become commercially viable, the development of software,
and in particular compilers to efficiently use them has become more urgent. We believe that these current
circumstances will push for a more aggressive use of run-time optimizations. It is more economical to forgo
some efficiency when parallelizing at run-time rather than executing sequentially, which would represent a
total waste of resources.

While several promising techniques have been developed, much work remains to be done in order to
make run-time parallelization of production quality.

New techniques need to be developed that can speculatively parallelize partially parallel loops. Current
methods are either based on inspector/executor approaches that are not generally applicable or make use
of synchronizations (spin–locks) that are not efficient in a large system. Run-time and static analysis have
to be seemlessly integrated in order to pass all useable and possibly incomplete static information from
the compilation to the execution phase. This will insure that only the minimum necessary information
needs to be collected and analyzed at run-time, thus lowering the overhead. Additionally it is necessary to
obtain more experimental, statistical data about the parallelism profiles of dynamic codes to increase the
probability of correct speculations. We believe that, simultaneous with run-time parallelization, run-time
data placement analysis and redistribution can be achieved with minimal additional overhead.

Last, but not least, architectural support that can either lower the run-time overhead of any of the known
methods or replace them all together may soon become very feasible and attractive.

We believe that the significance of the methods presented here will only increase with the advent of both
small scale parallel systems (workstations) as well as that of massively parallel processors (MPPs). Small
scale, singly used (as opposed to multiused) parallel machines will not have appeal unless they can speed
up single applications by executing them in parallel, regardless of efficiency. At the same time, the inability
to partition and parallelize grand-challenge applications would make MPP’s useless.

Finally we believe that the true importance of the described run-time parallelization techniques is that
they break the barrier at which automatic parallelization had stopped: regular, well–behaved programs. We
think that the use of aggressive, dynamic techniques can extract most of the available parallelism from even
the most complex programs, making parallel computing attractive.
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