CSE 5311-001 Lab Assignment 1

Due March 3, 2021

Goals:

1. Understanding of coupon collecting.
2. Understanding of enumeration.
3. Understanding of random simulation to verify a probability result.

Requirements:

1. The following paper does a variety of interesting probabilistic analyses:
P. Flajolet et.al., "Birthday paradox, coupon collectors, caching algorithms and self-organizing search", Discrete Applied Mathematics 39 (1992), 207-229. (http://algo.inria.fr/flajolet/Publications/FlGaTh92.pdf)

It includes the following formula, which provides the expected number of coupons needed under a general discrete probability distribution P for m coupons:

$$
\sum_{q=0}^{m-1}(-1)^{m-1-q} \sum_{|J|=q} \frac{1}{1-P_{J}} \quad(14 \mathrm{~b}) \quad \text { where } P_{J}=\sum_{i \in J} P_{i}
$$

For $m=3$ and $\left(p_{1}, p_{2}, p_{3}\right)=(a, b, c)$, the paper simplifies $(14 \mathrm{~b})$ to:

$$
1-\frac{1}{1-a}-\frac{1}{1-b}-\frac{1}{1-c}+\frac{1}{1-a-b}+\frac{1}{1-b-c}+\frac{1}{1-c-a}
$$

Your task is write a C program to 1) evaluate (14b) for the special case that k of the probabilities are the value p and the other $m-k$ probabilities are the value q and 2) implement a simple random simulation of generating coupons for this situation. Your program must compile and execute on omega.uta.edu.
(Formula (1) in https://web.cs.wpi.edu/~hofri/CCP.pdf says essentially the same thing as the formula above.)
2. Submit your C code on Canvas before 3:45 p.m. on March 3. Be sure to include comments regarding how to compile and execute your code.

Getting Started:

1. m will not exceed $50 . m$ is at least 2 .
2. The input is very simple:
a. \quad The first input line is m and $k . k$ must be larger than 0 and smaller than m.
b. The second line will have the value of the probability p for each of the first k coupons. p must be larger than 0 and such that $k \cdot p$ is smaller than 1 . Each of the other $m-k$ coupons will have a probability of $q=(1-k \cdot p) /(m-k)$
c. The third input line will be the number of times to execute a random simulation.
d. The fourth input line is a seed for the random number generator (e.g. srandom ()). (The only significance of the seed is in the reproducibility of the experiments.)
3. Your powerset approach should use $\Theta\left(m^{2}\right)$ time instead of the $\Theta\left(2^{m}\right)$ time needed by the original version of expression (14b). Elementary combinatorics (https://en.wikipedia.org/wiki/Pascal\'s_triangle) will be useful. You should output how many times innermost loop(s) execute for the theoretical part. The time for computing binomial coefficients should not be included.
