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VERY SIMPLE METHODS FOR ALL PAIRS NETWORK FLOW ANALYSIS*

DAN GUSFIELD-

Abstract. A very simple algorithm for the classical problem of computing the maximum network flow
value between every pair of nodes in an undirected, capacitated n node graph is presented; as in the
well-known Gomory-Hu method, the method given here uses only n- maximum flow computations. Our
algorithm is implemented by adding only five simple lines of code to any program that produces a minimum

cut; a program to produce an equivalent flow tree, which is a compact representation of the flow values, is

obtained by adding only three simple lines of code to any program producing a minimum cut. A very simple
version of the Gomory-Hu cut tree method that finds one minimum cut for every pair of nodes is also
derived, and it is shown that the seemingly fundamental operation of that method, node contraction, is not

needed, nor must crossing cuts be avoided. As a result, this version ofthe Gomory-Hu method is implemented
by adding less than ten simple lines of code to any program that produces a minimum cut. The algorithms
in this paper demonstrate that a cut tree of graph G can be computed with n-1 calls to an oracle that
alone knows G, and that, when given two nodes s and t, returns any arbitrary minimum (s, t) cut and its value.

Key words, network flow, combinatorial optimization

AMS(MOS) subject classifications. 90B10, 90B35, 90C35, 68Q25, 05C99

1. Introduction. For an undirected graph G with n nodes, Gomory and Hu [GH]
showed that the flow values between each of the n(n-1)/2 pairs of nodes can be
computed by solving only n- 1 network flow problems on G, saving a factor of n over
the obvious method. Furthermore, they showed that the flow values can be represented
by a weighted tree T on n nodes, where for any pair of nodes (x, y), if e is the minimum
weight edge on the path from x to y in T, then the maximum flow value from x to y
in G is exactly the weight of e. Such a tree is called an equivalent flow tree. They also
showed a stronger result, that there exists an equivalent flow tree, where for every pair
of nodes (x, y), if e is as above, then the two components of T-e form a minimum
cut between x and y in G. Such a tree is called a GH cut tree, and it compactly
represents one minimum cut for each pair of nodes. Figure 1 shows a three node graph
G, a cut tree T of G, and an equivalent flow tree T’ of G. Note that T’ is not a cut
tree of G. The method given in [GH] produces a GH cut tree using only n 1 maximum
flow computations. This method is well known and is discussed in many texts and
surveys on graphs and network flows [HI l, [H2], [LP], [FF], [FR, FR], [LP], [HA],
[PG], [VL], as well as in technical papers which build on it JAMS], [AH], [E], [H3],
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FIG. 1. Graph G, a cut tree T, and an equivalent flow tree T’.
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144 DAN GUSFIELD

[HR], [HS], [SC], [S], [T], [GrH]. For a basic discussion of graphs and network flows,
see [FF], [L], or [H2]. For a textbook discussion of the GH method, see [H2] or [FF].

Two cuts (X, Y) and U, V) are said to cross if all four set intersections, X (3 U,
X f’l V, Y f’l U, and Y (q V, are nonempty. The Gomory-Hu method, and methods based
on it, require that all the cuts computed be pairwise noncrossing. Most of the work
of the method, other than the work involved in the maximum flow computations, is
involved in explicitly maintaining the noncrossing condition, or is a consequence of
that condition. In particular, the operations of node contraction and identification of
which nodes to contract, are consequences of the need to maintain noncrossing cuts.
In all discussions of the GH method that we know of, both algorithmic and mathemati-
cal, the existence of noncrossing cuts has been fundamental to both the logic of cut
trees, and to the algorithms to find and use them.

The GH method is fairly involved and nontrivial to program. A different method
for computing all the flow values, and a cut tree, can be obtained by modifying a
method of Schnorr [SC] for a related problem on directed graphs. This method requires
O(n log n) maximum flow computations, but it can be implemented to have an
amortized total running time of O(n4). However, the implementation is more complex
than the GH method, and to obtain the faster time bound, or to build cut trees, the
method also needs to maintain noncrossing (directed) cuts.

As for equivalent flow trees, in most of the published literature a full GH cut tree
is used even when only the flow values are required. However, after the results in this
paper were first obtained [GU1], we learned of a related method by Granot and Hassin
[GrH] which can easily be modified to produce an equivalent flow tree, but not a cut
tree. That method solves only n-1 maximum flow problems, and does not need to
maintain noncrossing cuts. Hence, that is the first paper we know of that indicated
that crossing cuts can be used in computing equivalent flow trees.

in this paper we give simple, efficient methods which show that crossing cuts can
be used in producing GH cut trees as well as equivalent flow trees. We first give an
extremely simple, efficient algorithm for producing an equivalent flow tree that is not
necessarily a cut tree; as in the GH method, only n- 1 maximum flows are computed
by the method. The simplicity of the method comes from the fact that the method does
not need to avoid crossing cuts, and so does not need to contract nodes. We implement
the method by adding only three simple lines of code to any maximum flow program
that produces a minimum cut; the program can be extended to explicitly output the
n(n-1)/2 flow values, by adding only two additional lines of code. We next show
that with a modification of the Gomory-Hu cut tree method, noncrossing cuts need
not be maintained, and so the fundamental operation of node contraction is not needed,
and the intermediate cut trees need not be explicitly represented or searched. Hence,
the major programming and data structures details needed for the original GH method
can be avoided. As a result, any maximum flow program producing a minimum cut
can be converted to one that efficiently computes a GH cut tree, with the addition of
under ten simple lines of code. More generally, we show that noncrossing cuts, which
are central to all previous expositions on cut trees, are never explicitly needed in
efficient algorithms for finding either cut trees or equivalent flow trees.

2. Equivalent flow trees and all pairs maximum flow.

ALGORITHM EQ. Input to the algorithm is an undirected capacitated graph G;
output is an equivalent flow tree T’. The algorithm assumes the ability to find a
minimum cut between two specified nodes in G.
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NETWORK FLOW ANALYSIS 145

1. Create a (star) tree T’ on n nodes, with node at the center and nodes 2
through n at the leaves.

2. For s from 2 to n do steps 3 and 4.
3. Compute a minimum cut (X, Y) in G between (leaf) node s and its (unique)

neighbor in T’. Label the edge (s, t) in T’ with the capacity of (X, Y).
4. For every node larger than s, if is a neighbor of t, and is on the s side of

(X, Y), then modify T’ by disconnecting from t, and connecting to s. Note
that each node larger than s remains a leaf in T’.

It is easy to see that at every iteration, node s and all nodes larger than s are
leaves in T’, so each chosen s has a unique neighbor, as expected by the algorithm.
Figure 2 gives an example of the algorithm. Figure 2(a) shows the graph G, and the
five cuts used by the algorithm; the capacity on each edge in G is one. Figure 2(b)
shows tree T’ before any cuts are computed; Figure 2(c) shows the tree after the first
cut (1, 2) is computed; Figure 2(d) shows the final equivalent flow tree for G. Note
that in this example the (5, 1) and the (3, 1) cuts each cross the (1, 2) cut. Also note
that the equivalent flow tree T’ of Fig. would be obtained from running Algorithm
EQ on the graph G of Fig. 1, illustrating the fact that Algorithm EQ does not always
produce a cut tree.

G" 1

(1,2) cut

(a

-(5,1) and (6,2) cuts

2

(3,1) cut

/ (4,2) cut

1

(b)

2 3 2 3

(c)

2 2 3

(d)

FIG. 2. Graph G, and the creation of equivalent flow tree T’ for G.
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146 DAN GUSFIELD

To show the extreme simplicity ofthis method, we present the following "program"
which implements Algorithm EQ. In the program, p is an n length vector initialized
to 1; at every iteration, every node larger than or equal to s is a leaf, and p[ i] indicates
its unique neighbor. The program takes in graph G and outputs a set of weighted
edges which form an equivalent flow tree T’ of G.

PROGRAM EQ.
for s:= to n do
begin
Compute a minimum cut between nodes s and t:-p[s] in G"
let X be the set of nodes on the s side of the cut.
Output the edge (s, t) and the maximum s, t flow value f(s, t).
for i:= s to n do
if (i is in X and p[i]=t) then p[i]:=s;

end;

To produce all the n(n-1)/2 flow values, let F be an n-by-n array, initialized to
infinity, holding the flow values. Then insert the following lines before the "end;" above.

F[s, t]::F[t, s]:=f(s, t);
for i:=I to s-1 do
if (i (> t) then F[s, i]:=F[i, s]:=min(f(s, t), F[t, i]);

In addition to the simplicity of the algorithm, it is noteworthy that the only
interaction with graph G occurs inside the minimum cut routine. Hence, the algorithm
can be thought of as n- 1 calls to an oracle which alone knows the structure of G.
Furthermore, for any given pair (s, t), if there is more than one minimum s-t cut, then
the oracle (or adversary) is free to choose one arbitrarily. Thus, an equivalent flow
tree for an unknown graph can be inferred from n- 1 cut queries. We shall see that
this is true for the cut tree as well.

We will present below a short, direct proof of the correctness of Algorithm EQ.
A different, indirect, proof based on comparing the behavior of Algorithm EQ with
the GH method is given in [GU1]. Before presenting the direct proof, we state some
needed results initially shown in [GH].

LEMMA 1 [GH]. Let (X, Y) be a minimum cut in G separating nodes x e X and
y Y. Let u and v be two nodes on the X side of the cut, and let (U, V) be an arbitrary
minimum (u, v) cut in G. Ify U, then (U’, V’) (U Y, Vf3X) is a minimum (u, v)
cut, else (when y V) (U’, V’)= (U 0 X, V U Y) is a minimum u, v) cut.

Figure 3 shows the two possibilities described by Lemma 1; cuts (X, Y) and U, V)
are drawn with straight solid lines, and cut (U’, V’) is drawn with a right angle, and
marked by hatch marks. Note that in Lemma 1, it does not matter whether x is in U
or in V; in Fig. 3 we have drawn x to be in U.

The importance of Lemma 1 is that it proves there always exists a minimum (u, v)
cut (U’, V’) in G such that Y falls entirely on the u side or entirely on the v side of
(U’, V’). Hence (U’, V’) does not cross (X, Y). The existence of a noncrossing cut
(U’, V’) is all that is needed in the correctness proof of the original GH method, but
in this paper we use the following immediate, but key, corollary.

The original lemma in [GH] is somewhat weaker, but the statement given here is explicitly stated and
proved in the body of the proof of the original version. For the easiest such proof of Lemma 1, see [FF, p.
179] or [H2, pp. 66-68].
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NETWORK FLOW ANALYSIS 147

X Y

U

X

FIG. 3. The two cases of Lemma 1.

Y

U

COROLLARY 1. Let (X, Y), (U, V), and (U’, V’) be as in Lemma 1. Then the
minimum (u, v) cut (U’, V’) does not cross (X, Y), and it splits X exactly the same way
that U, V) does.

The following two facts are shown in [GH] (also in [FF] and [H2]) and are
simple to prove.

LEMMA 2 [GH]. Letf(x, y) denote the maximumflow value between nodes x and y.
If {v, v2, ", Vk} is a set ofnodes in G, thenf(v, Vk)--> min [f(vi, vi+): i= 1 to k- 1].

COROLLARY 2 [GH]. If i, j, and k are three arbitrary nodes in G, then the minimum
off(i, j), f(i, k), and f(j, k) is not unique.

2.1. Correctness of Algorithm EQ. Consider each edge (s, t) created in step 3 of
the algorithm to be directed from s to t; then all edges are directed from larger node
label to smaller node label, and hence T’ is a directed tree where every directed path
leads to node 1. For any path P (directed or not), let min (P) be the minimum weight
of the edges on P.

LEMMA 3. Suppose node reaches node j by a directed path P[i,j] in the final T’,
and suppose that (k, j) is a directed edge into j, where k is smaller (has smaller label)
than any node on P[ i, j] except j. Then node was a neighbor ofj in T’ at the time when
the (k, j) cut C was computed by Algorithm EQ. Furthermore, is on the k side of C if
and only if k is on the directed path P[ i, j] in the final T’.

Proof At the start of the algorithm, node is a neighbor of node only. Then
until iteration i-1, when is node s in step 2 of the algorithm, node has exactly
one neighbor at any time, and the unique neighbor of can change from v to w only
when v is and w is s in step 2. Hence every node on P[i, 1] is a neighbor of at
some point before iteration i-1, and no node not on P[i, 1] is. Then since j < k,
j must be i’s neighbor before the (j, k) cut C was computed. Furthermore, since k is
smaller than every node on P[i,j] except j, j must be the neighbor of when C is
computed. Now if k is on P[i,j], then surely is on the k side of C, and if k is not,
then cannot be on the k side. [3

THEOREM 1. Given input graph G, Algorithm EQ correctly computes an equivalent
flow tree T’ for G.

Proof First, note that if (x, y) is an edge in T’, then Algorithm EQ computed an
(x, y) minimum cut, and its value is written on edge (x, y). Hence the tree is correct
for every pair of neighboring nodes in T’. Now we show that if (x, y) is an arbitrary
pair of nodes not connected by an edge in T’, and P[x, y] {x Vl, vk y} is the
path (ignoring edge directions) in T’ from x to y, then f(x, y)= min [f(vi, vi+): i= 1
to k-l]. Given Lemma 2, we need only to show that f(x,y)<=min[f(vi, v+): i= 1

D
ow

nl
oa

de
d 

10
/0

1/
15

 to
 1

29
.1

07
.1

20
.2

07
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



148 DAN GUSFIELD

to k- 1]. Suppose not, and let (x, y) be the pair with shortest path P[x, y] among all
pairs where f(x, y) > min (P[x, y]).

Case 1. Path P[x, y] is a directed path from x to y (the case when it is directed
from y to x is identical). Let v x be the neighbor of y on P[x, y] (if x v, the edge
(x, y) is in T’). By the minimality of P[x, y], f(x, v) min (P[x, v]), and since f(x, y)
is assumed to be greater than min (P[x, y]), Corollary 2 implies that min (P[x, y])=
f(x, v)-f(v, y). But by Lemma 3, the cut between nodes y and v found by Algorithm
EQ separates x and y, so f(x, y)<-_f(v, y)=min (P[x, y]), a contradiction.

Case 2. Path P[x, y] consists of two directed subpaths Ply, z] and P[x, z], where
P[y, z] is directed from y to z and P[x, z] is directed from x to z. Node z can be
thought of as the least common ancestor of x and y in T’ when node 1 is the root.
Let x be the neighbor of z on P[x, z] and let y be the neighbor of z on P[y, z].
Assume that x < y, so in the running of Algorithm EQ the (x, z) cut, C(x, z), was
computed before the (y, z) cut.

From Case we know that f(x, z)= min (P[x, z]) and f(y, z)= min (Ply, z]), so
either f(x, z) or f(y, z) equals min (P[x, y]). Hence by the assumption that f(x, y) >
min (P[x, y]), Corollary 2 says that f(x, z) =f(y, z) min (P[x, y]), and so there is an
edge of weight min (P[x, y]) on path P[x, z]. Let e (u, v) be the edge closest to z
on P[x, z] with weight min (P[x, y]), let C(u, v) be the (u, v) cut of that weight found
by EQ, and let v be closer to z on P[x, z] than u is. Then by Lemma 3, x, u, and v fall
on the x side of the cut C(x, z) computed by the Algorithm EQ, and y falls on the
z side of C(x, z). By Lemma 3 again, x falls on the u side of C(u, v), and from the
assumption that f(x, y) > min (P[x, y]), y must also fall on the u side. Figure 4 shows
the general situation. In particular, the positions of nodes u, v, x, and y are each
determined down to one of the four quadrants defined by the intersections of C(x, z)
and C(u, v); the positions of nodes x and z are each determined only to two quadrants.

C(x,z)

side z side

FIG. 4. Case 2 of the proof of Theorem 1.

Now there are two cases for the position of z. In either case, Lemma can be
applied (recall that in Lemma the only assumption on the position of x is that it is
in X), yielding a minimum (u, v) cut C* that either separates x and y, or that separates
z and v. In particular, if z U, then the quadrant containing v defines a minimum
(u, v) cut, and this cut also separates v and z; if z V, then the quadrant containing
u defines a minimum (u, v) cut that also separates x from y. But, the minimum (u, v)
cut has capacity min (P[x, y]), so if C* separates x and y, then f(x, y)_-<min (P[x, y]),
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NETWORK FLOW ANALYSIS 149

and so f(x,y)=min(P[x,y]) as claimed. If C* separates v and z, then f(v,z) <-

min(P[x,y]). But P[v,z] is a directed path in T’, so from Case 1, f(v,z)=
min (P[v, z]) and min (P[v, z]) > min (P[x, y]) by the selection of v, so f(v, z) >
min (P[x, y]). This gives a contradiction, and we conclude that f(x, y)_-<min (P[x, y]),
so f(x, y)= min (P[x, y]), and the correctness of Algorithm EQ is proved.

3. A simple algorithm for the GH cut tree. In this section we show how to modify
the GH method to avoid node contraction and the maintenance of noncrossing cuts.
The result is a very simple algorithm to find a GH cut tree. The key idea is to show
that although the original GH method must find in each step a minimum (u, v) cut
that does not cross any previously used cuts, a modification of the method permits
any minimum (u, v) cut to be used. The modified method will be proved correct by
showing how its execution simulates a possible execution of the original GH algorithm.

DEFINITION. For a subset Ni ofnodes of G, the contraction of Ni is the replacement
of the nodes of Ni by a single node ci, and for each node v G-Ni, the replacement
of the edges from v to Ni with a single edge from v to ci; the capacity of edge (v, ci)
is the sum of the capacities of the removed edges incident with v.

3.1. The Gomory-Hu method.

Input: An n node capacitated undirected graph G..
Output: A GH cut tree T for G.
1. Set T to be a single "supernode" containing every node of G. Then iterate the

following step until every supernode contains only one node of G.
2. Pick a supernode S containing more than one node of G, and pick two nodes

u and v in S. Find all the connected components of T-S and let Ni be the
set of nodes of G contained in the supernodes of the ith connected component
of T-S. Successively contract the nodes in each set Ni in G, and let G(S) be
the resulting graph; note that the nodes in S are not contracted. Compute the
maximum flow from u to v in G(S). Let f(u, v) be the value of the (u, v) flow,
and let C(u, v) be a minumum cut between u and v in G(S). Let Su be the
supernode containing the nodes of G in S which fall on the u side of C(u, v),
and let S. be the supernode containing the remaining nodes of S. Modify T
by replacing supernode S with Su and S., connected by an edge of weight
f(u, v). Any edge (S, S’) incident with S in T is now moved to be incident with
Su if S’ is in a contracted node of G(S) on the u side of C (u, v), and is moved
to be incident with S. if S’ is in a contracted node of G(S) on the v side of
C(u, v); note that the weights of all the edges remain unchanged, including
those edges which were moved.

The existence of noncrossing cuts, stated earlier in Lemma 1, provides justification
for the contraction operation in the GH method. That is, in order to find a minimum
(u, v) cut in G, it is permissible to contract Y; a minimum (u, v) cut in the graph with
Y contracted defines a minimum (u, v) cut in G, and of course, the two cuts have the
same capacity. Applied iteratively from the leaves of T to S, the lemma can be used
to show that a minimum (u, v) cut (for u and v in S) in the contracted graph G(S),
has the same capacity as a minimum (u, v) cut in G. Such a cut will of course not
cross any previously found cuts, and is desired in the GH method because it is then
easy to see how to use that cut to split S and how to reconnect the supernode neighbors
of S to S, and S.

3.2. Crossing cuts can be used to split a supernode. Consider the basic step in the
GH method of dividing a supernode S by computing a minimum cut C(u, v) between
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150 DAN GUSFIELD

u and v in the contracted graph G(S). This step does two things" it decides how to
split S into two new supernodes Su and Sv, and it decides how to reconnect the
neighbors of S to the supernodes Su and Sv. In this section we will show how the GH
method can use crossing cuts in carrying out the first decision.

DEFINITION. A pair of nodes (x, y) is called a cut pair for an edge e of an
intermediate cut tree T if the nodes of G in the two connected components of T-e
form a minimum (x, y) cut in G.

For the following lemma, let T be an intermediate tree produced by the GH
algorithm, with e an edge in T between two supernodes S and S’. Let (x, y) be a cut
pair for edge e, with x S and y S’; let u and v be any nodes in S, and let C(u, v)
be a minimum (u, v) cut in the contracted graph G(S) defined from T-S. Let S, and
S be the new supernodes created from S, and let T be the updated intermediate tree
given by the GH algorithm.

LEMMA 4 [GH].2 The pair (u, v) is a cut pair for the edge between S, and S, in
T. Assume x U (the case when x V is symmetric). If (S’, S,) is an edge in T, then
(x, y) is a cut pair for it, and if (S’, Sv) is an edge in T, then (v, y) is a cut pair for it,
in T.

Initially we will need only the following simpler version of Lemma 4, which
follows easily by induction on the number of iterations of the GH algorithm.

COROLLARY 3 [GH]. Let T be an intermediate tree in the computation of a GH
cut tree, and let e be an edge in T between two supernodes S and S’. Then there is a pair
of nodes (x, y) with x S and y S’ such that (x, y) is a cut pair for e.

Lemma 4 and its corollary are not as simple as they might at first seem, since x
and y may not be the nodes used in the flow that created e, and the nodes that were
used might not be in the current supernodes S or S’ in T.

We are now ready for the major theorem of this section.
THEOREM 2. Let u and v be two nodes of G in supernode S of an intermediate

GH tree T. If (U, V) is any minimum (u, v) cut in G (with u U and v V), then there
exists a minimum (u, v) cut (C,, C) in the contracted graph G(S) (with u Cu and
v C) such that S f3 U S (3 C, and S (3 V S (3 Cv, and such that the capacities of the
two cuts are the same.

Hence to determine how S could be split in a step of the GH method, we need
not compute a cut in the contracted graph G(S), but rather use the split of S created
by a minimum cut splitting S in the original graph G.

Proof of Theorem 2. By Corollary 3, for each from to k, C, (G-N,, N,) is
a minimum cut separating some node in G-N, from some node in N,, since S_
(G- N,).

We now apply Corollary 1 to cuts C1 and (U, V). Corollary 1 implies that there
is a minimum (u, v) cut (U, V) with the same capacity as (U, V), such that N

__
U

or N1
_
V, and such that (G N) f3 U (G N) f U. Since S (G N), it follows

that SfU-SU1 (and Sf3V-SV1).
Now consider the cut C2=(G -N, N2). Since N and N2 are disjoint, and

S
_
G- N2, it follows that S CI N

_
G- N. Hence, by Corollary there is a minimum

(u, v) cut (U, V2) derived from cuts C2 and (U, V1) such that
1. (U2, V) has the same capacity as (U, V) and hence as (U, V).
2. N2 Uz or N2_ V2.

As with Lemma 1, the statement and proof of Lemma 4 is found in the body of a proof of a different
proposition in [GH], [FF], and [H2]. The simplest such proof of Lemma 4 appears in [FF, p. 182] or [H2,
pp. 71-73].
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3. (G- N2) U2 (G- N2) f’) U1, so N c2 U2 or N1
_

V2 and N1
_

U2 if and only
if N__. U1.

4. Sf3 U2=S UI=Sf) U (and Sf’) V2=Sf) V).
Continuing in this way, using the fact that Ni is disjoint from S and from each

N:j-<_ i-1, we can inductively apply Lemma 1 to cuts Ci and (Ui_, V_I) (the cut
obtained in iteration i- 1) to obtain a minimum (u, v) cut (Ui, V) with the properties
that

1. (Ui, V) has the same capacity as (U, V).
2. S U=Sf U (and Sf V=S V).
3. (G-Ni)f) Ui=(G-N)f") U_I, so for all j_-< i, N___ U or N___ V/and N.c_ Ui

if and only if N U.
We conclude then that S Uk S U (and $ Vk S V), and that for each

< k, Ni
_

Uk or Ni
_

Vk, and (Uk, Vk) has the same capacity as (U, V). Now since
each N is strictly on one side or the other of (Uk, Vk), it clearly defines a (u, v) cut
(Cu, Cv) in G(S) of the same capacity, and the theorem is proved. [3

COROLLARY 4. For all j, N
_
Uk if and only if N

_
U..

This corollary, and the last part of line labeled 3 above are not needed in the
proof of Theorem 2, but will be needed later.

3.3. Reconnection despite crossing cuts. Theorem 2 shows how to determine, using
the original G instead of a contracted graph, a split of S that the GH algorithm could
have found. However, a minimum (u, v) cut C in G might split a set Ni between the
u and v sides of C (i.e., might cross a previous cut); the GH algorithm has no rules
to deal with such cuts. In this section we will see how to use crossing cuts to reconnect
the neighbors of S to Su and Sv.

3.3.1. Modifying the GH cut tree method. We first modify the GH method so that
in every intermediate tree, every supernode S contains exactly one node called the
representative of S, denoted r(S). We start by arbitrarily declaring some node to be
the representative of the first supernode of the GH method (the set of all nodes of
G). We then impose the rule that when any supernode S is to be split, the flow
computed must be between r(S) and some other node v of S. After S is split into two
supernodes Sr(S) and S, r(S) is the representative of St(s), and v becomes the
representative of S. It is then easy to see inductively that each supernode has exactly
one representative. With this modification, successive application of Lemma 4 yields
Lemma 5.

LEMMA 5. Let The an intermediate cut tree with S and S’ any two adjacent supernodes
in T; let Ni be the connected component of T-S containing S’. Then G- Ni, Ni) is a
minimum cut in G separating r(S) and r(S’). That is, (r(S), r(S’)) is a cut pair for the
edge in T between S and S’.

For the statement of the following theorem, let S and N for j -< k be as in Theorem
2, and for j -< k, let yj N, xj G N) be such that G N, N) i.s a minimum (xj, y./)
cut in G (by Corollary 3, such an (x, yj) exists). Also, for u and v in S, let (U, V) be
any minimum (u, v) cut in G, and let (Uk, Vk) be the minimum (u; v) cut obtained
from (U, V) as in the proof of Theorem 2.

THEOREM 3. For a fixed j, if xj u, then N Uk if and only ify U.
Proof Corollary 4 says that /V Uk if and only if N_ U. So all that must be

proved is that N_ U if and only if y 6 U, assuming that u x. Now if u x, then
xj U_I (since S 0 U S Yl U_I), so Lemma 1 says that yj U if and only if y U_1.
But y N

_
G N_), and G N_I) fq U_I (G N_) fq U_2, so y U_I if and

only if yj U_. Now y (G-Np) for all p <j, so we can induct as above to get
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152 DAN GUSFIELD

(G-Np)f"I Up=(G-Np)f3 Up_l,soyj Up ifand only ify Up_l for allp <j. Hence,
assuming that x u, it follows that y Uk if and only if y U, and otherwise,
y Vk.

Theorem 3 is the key to reconnecting neighbors of S after S is split by a crossing cut.
COROLLARY 5. For S a sup.ernode in an intermediate tree Tproduced by the modified

GH method, and for v r(S), let (U, V) be any minimum (r(S), v) cut in G. The
following rule correctly decides whether a neighbor of S, S’, in T should be connected to

St(s) or to S: If r(S’) is on the r(S) side of (U, V), then connect S’ to Sr(S), else to S.
Proof. By Lemma 5, when the modified GH method is used, r(S) satisfies the

conditions required of x, namely, that r(S) G N the cut (N, G N) is a minimum
(r(S), r(S)) cut, where S is the supernode neighbor of S in N. Furthermore, in the
modified GH method, u =x r(S) for every j. Hence Theorem 3 implies that there
exists a minimum (u, v) cut (Uk, Vk) in G(S) such that for every j, N c_ Uk if and
only if r(S) U. Such a cut Uk, Vk) could have been computed by the GH algorithm,
and so the corollary follows.

3.3.2. The methotl in brief. Theorem 2 and Corollary 5 form the basis of our simple
version of the GH method. Initially, node 1 is the representative of the supernode
consisting, of all the nodes. When splitting a supernode S, compute an arbitrary
minimum cut in G between r(S) and any other node v in S. The nodes of S which
fall on the v side of the cut form a new supernode S with representative v, and the
other nodes in S remain in Sr(s) with representative r(S); if S’ is a supernode neighbor
of S in T before the split, and r(S’) falls on the v side of the cut, then replace the
(S, S’) edge with edge (S, S’).

3.4. A simple complete cut tree lrogram. To demonstrate the simplicity of our
version of the GH method, we give the following program to compute a GH cut tree
of input graph G. Theorem 2 and Corollary 5 allow great flexibility in the order in
which supernodes are split, but for simplicity, the program below chooses s nodes in
order from 2 to n. As in program EQ, p is an n length vector initialized to 1. At iteration
s, p[s] is the representative of the supernode that s is in. The edges of T are the final
pairs (i,p[i]) for from 2 to n, and edge (i,p[i]) has value fl(i). If each edge is
considered a directed edge from to p[i], then T forms a directed tree where every
node leads to node 1.

CUT TREE PROGRAM MGH.

for s:=2 to n do
begin
Compute a minimum cut between nodes
s and t:-p[sl in G; let X be the set of nodes on the s side
of the cut. Output the maximum s, t flow value f(s, t).
f[sl:=f(s, t);
for i:=l to n do
if (i(>s and i is in X and p[il=t) then p[i]:=s;

if (p[t] is in X) then
begin
p[sl :=pit];
p[t]:=s;
fl[s] :=flit];
fl[tl:=f(s, t);
end;

end;
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We use the convention that the name of a supernode is given by the name of its
representative, and note that after iteration i- 1, nodes 1 through are representatives
of supernodes, and no node j>i is a representative node in supernode p[j]; so for
every node j > s, p[ v] indicates the representative of the supernode that v is in. Every
supernode other than 1 points (with the p vector) to exactly one other supernode, and
hence if x is a supernode other than 1, then its neighbors consist of those supernodes
pointing to x, plus p[x], the supernode to which x points. The neighbors of supernode
1 are just those supernodes with p value 1, i.e., those supernodes that point to 1. During
the ith iteration, node + 1 becomes the representative of a supernode labeled i+ 1,
and all representatives which point to p[i+ 1] and which fall on the i+ 1 side of the
(i+ 1, p[i+ 1]) cut are now made to point to i+ 1. Since the intermediate trees are
being kept in an n-length vector, not an adjacency list, the only subtle part of the
program occurs after a flow from s i+ to p[i + 1] if points to a supernode
neighbor x of t, and x falls on the s side of the (s, t) cut. In that case we make point
to s, and s point to x; otherwise, s remains pointing to t.

To explicitly accumulate the maximum flow values between all the pairs, we simply
add the same two lines of code shown after algorithm EQ; the lines are added just
before the final end. This is correct, because the set of (s, t) flow pairs generated in
MGH is clearly a set that could have been generated in EQ. This accumulation of flow
values can also be shown to be correct strictly in the context of the GH method, but
was not obvious and was observed only after the discovery of algorithm EQ. Without
this observation, a simple O(n2) method to explicitly calculate the n(n-1)/2 flow
values is to do depth first search on the final cut tree, so that when backing up from
a node x to y, the flow fl(y, z) from y to a descendent z of x can also be computed
as the minimum offl(x, y) and fl(x, z). While this depth first search is not difficult, it
requires a change in how T is represented, and the above two-line approach is certainly
much simpler.

Note that, as in Algorithm EQ, the only interaction with G is in the minimum
cut routine, so the tree could be inferred from n- 1 calls to an oracle which returns
a minimum cut and its value.

Relation with Algorithm EQ. The modified GH method can be described in
terms of Algorithm EQ. To compute the GH tree, change step 4 of Algorithm EQ
to read:

4. For every node other than s, if is a neighbor of t, and is on the s side of
(X, Y), then modify T’ by disconnecting from t, and connecting to s, labeling
the new i, s) edge with the label from the old i, t) edge.

Phrases in italics show the differences between this step 4 and the step 4 of
Algorithm EQ.

4. Additional comments and extensions. (1) It is easy to underestimate the amount
of programming detail needed by the original GH method. In fact, the ideas leading
to this paper partly began after a failed attempt to quickly implement the method. The
implementation was made more difficult because we used existing code for finding the
maximum flow, but we did not understand the code well, and we needed to modify
it to implement graph contraction and expansion. With the modified GH method of
this paper, we totally avoid these difficulties, since we never touch any of the existing
code, and never touch the graph after it is input.

In addition to the obvious work involved in contraction, an implementation of
the original GH method must do a fair amount of work implied by the need to do
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contraction. It must maintain T in a way so that the connected components can be
efficiently found, and so that the nodes of G contained in particular supernodes of T
can be identified, both to split a supernode, and to properly contract the nodes of G
contained in a component of T-S. It must also maintain information about the
connected components of T-S, or it must reexpand components after a flow, so that
it can determine which supernodes fall on the u side and which on the v side of the
cut C(u, v)in G(S).

(2) The original GH method might run faster in practice than the modified method
(although the worst case asymptotic time is the same), since the contracted graphs are
smaller than the original graph. However, it is an empirical question whether the
speedup in flow computation compensates for the work needed to implement contrac-
tion and all the associated work implied by contraction; contraction should be seen
as a heuristic that might accelerate the performance of the program.

(3) Some of the ideas in this paper have been extended and used to study the
structure of minimum cuts in three other settings. A GH cut tree represents at least
one minimum cut for each pair of nodes in an undirected edge-weighted graph. In
[GN1] we generalize the GH cut tree, showing how to efficiently and compactly
represent all minimum cuts between each pair of nodes. Interestingly, our method is
based on equivalent flow trees, rather than on cut trees, further extending the importance
of efficient computation of equivalent flow trees. This work also connects to and builds
on recent work by Matula [M] and by Mansour and Schieber [MS] on computing
connectivity quickly. In related work [GN2] we show how to construct with O(n)
maximum flow computations a cut tree for weighted node cuts, rather than edge cuts.
We also show how to compactly represent weighted edge cuts in a directed graph.

(4) Very recently, Cheng and Hu [CH] have further reduced the importance of
noncrossing cuts in equivalent flow trees. In Algorithm EQ and in the algorithm from
[GrH], crossing cuts are allowed, but the proofs of correctness still use the fact that
noncrossing cuts exist. Cheng and Hu give a different method which uses only n- 1
maximum flow computations, and can be used to produce equivalent flow trees, but
not cut trees. However, its proof of correctness does not even depend on the existence
of noncrossing cuts. Because of that, their method can be used to represent minimum
cut values where the value of a cut is given by an arbitrary function, i.e., is not the
sum of the edge capacities crossing the cut. It is not difficult then to use this method
to improve the problem considered in Schnorr [SC]. For a pair of nodes (i,j) define
(i,j) as the minimum of the flow in a directed graph from to j, or fromj to i. These
/3 values are needed in several problems [GN2], [GU]. Schnorr shows, using a very
clever idea, that all the pairwise/3 values can be computed with O(n log n) maximum
flow computations on the original graph. He then modifies that method to show that,
with contraction, those O(n log n) flows run in total time O(n4). However, using the
method of [CH] with its relaxed notion of cut values, the/3 values can be computed
using only O(n) maximum flow computations [GN2]. Hence in Schnorr’s problem,
contraction can also be avoided without sacrificing efficiency.

5. Conclusion. We have shown how to efficiently construct equivalent flow trees
and GH cut trees without finding or maintaining noncrossing cuts, hence without node
contraction and its associated work. The main theoretical consequence is conceptual
clarity: node contraction, which is presented in existing discussions of the GH method
as the fundamental algorithmic idea, is in fact not fundamental to cut tree computation;
it should be seen as a heuristic which might accelerate the running of the flow
computations. Similarly, although the existence of noncrossing cuts remains central in
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the logic of cut trees, they are not explicitly needed in the efficient computation of cut
trees. An additional theoretical consequence is the fact that a cut tree can be inferred
from n- 1 queries of an oracle which alone knows the actual graph. On the practical
side, the import of these observations is that they lead to very simple, efficient programs
for computing equivalent flow trees and cut trees; most of the programming and data
structure details of the original GH method become unnecessary when contraction is
avoided.
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