
Chapter 45

Efficient Algorithms for Generalized Cut Trees+

Dan Gusfield*
Dalit Naor*

Abstract

The Gomory-Hu cut tree is a compact and ef-

ficiently computed representation of selected min-

imum edge cuts in a weighted undirected graph

G=(V,E) with n nodes. It represents (y) minimum

cuts, one for each pair of nodes in G, and can be

constructed with only n - 1 flow computations.

In this paper we generalize the types of cut trees

that can be efficiently constructed. We solve the

open problem, posed by T-C. Hu [HI, of construct-

ing with n - 1 flows a cut-tree for minimum node

weighted cuts in an undirected graph. We then

show how to build cut-trees that compactly repre-

sent the minimum edge cuts in directed graphs, par-

tially solving the open problem of constructing cut-

trees for weighted edge cuts in directed graphs. We

also briefly discuss a generalization of the above cut

trees to efficiently represent all minimum cuts be-

tween any pair of nodes.

* Computer Science Division, University of California,

Davis, CA. 95616.

+ Research partially supported by a grant CCR-8803704 from

the National Science Foundation.

1 Introduction and Statement of

Results

For an undirected edge-capacitate.d graph G with n

nodes, Gomory and Hu [GH] showed that the flow

values (and thus the minimum edge cut values) be-

tween all of the n(n - 1)/2 pairs of nodes can be

computed using only n - 1 flow computations. The

(y) flow values can be represented by a weighted tree

2’ on n nodes, where for any pair of nodes (z, y), if e

is the minimum weight edge on the path from x to

y in T, then the value of the minimum (x, y) cut in

G is exactly the weight of e. Such a tree is called an

equivalent flow tree.

Gomory and Hu further showed that there exists

an equivalent flow tree, where for every pair of nodes

(3, y), if e is as above, then the two components of

2’ - e define a minimum cut between x and y in G.

Such a tree is called a cut tree[GH]. The cut tree

compactly represents all (‘;) minimum cut values as

well as a set of n-l cuts with the property that for

any pair of nodes (i, j), at least one cut in this set is

a minimum (i, j) cut, and it can be retrieved quickly

given (i, j). In Figure 1, an undirected graph G and

its cut tree 2’ are shown.

Producing a cut tree (by Gomory-Hu method

[GH] or Gusfield’s method [G]) or an equivalent flow

422

G:

Figure 1: A graph G and its cut tree T.

T:

tree (by Gusfield’s method [G] or Granot-Hassin’s

method [GrH]) q re uires only n-l flow computations,

a large improvement over the obvious approach for

computing the (;) minimum cuts.

There are additional cut types that are not

handled by the Gomory-Hu method, for example

weighted node cuts or directed cuts. It is natural

to ask whether a representation, analogous to the

GH (Gomory Hu) tree, exists for other types of cuts.

T.C. Ku [H] posed the question of the existence and

efficient construction of a cut tree representing mini-

mum node weighted cuts, and left open the question

of building cut trees for directed graphs. Granot and

Hassin [GrH] partially answered Hu’s first question,

constructing with n - 1 flows an equivalent flow tree

but not a cut tree for node weighted graphs.

The cut tree problem for directed graphs seems

somehow different as there can be as many as (n +

Z)(n- 1)/2 distinct minimum cut values in a directed

graph with n nodes [FrFr]. Hence, a single small cut

tree like the GH tree can not possibly represent all

these values and cuts. However, we will see that

these cuts can be represented in some compact and

useful structure.

1.1 Main Results

Before we discuss the main results in this paper, note

that a GH cut tree has three desirable features that

we would like to achieve in other cut trees:

l The cut tree takes only O(n) space, and yet

implicitly represents one minimum cut for any

pair of nodes.

l For any pair of nodes, one minimum cut sepa-

rating the nodes can be extracted in O(n) time

from the tree. (Also, for any pair of nodes, the

max flow value between the nodes can be re-

trieved in O(1) t ime after an O(na(n)) time pre-

processing of the values in the tree, by using the

least common ancestor algorithm on weighted

trees of [HT] or [SV]. A related method to effi-

ciently retrieve values once the GH tree is known

can be found in [T] and [Cha].)

l The cut tree can be constructed n times faster

than by finding each of the (‘;) cuts separately.

In this paper we solve the problem posed by Hu

[H] and show how to construct a cut-tree for mini-

mum node weighted cuts with only O(n) flows; the

tree that we construct is of size O(n), and given any

pair of nodes (i, j), the minimum weight node cut

between i and j and its value can be found in O(n)

time. Hence all desirable features of a cut tree xe
obtained in this case.

In the case of directed graphs, we construct a fam-

ily of n trees Tr , . . . , T,, where 97, is a cut tree repre-

senting the minimum cuts for all ordered pairs (s, j),

i.e. all ordered pairs whose first node is s. These

trees therefore represent one directed minimum cut

for any ordered pair of nodes, in space which is an

order of n smaller than the obvious representation.

Further, for any ordered pair (i, j} a minimum cut

separating i from j can be extracted from T; in O(n)

time. The construction of each T; requires n - 1

flows, so these trees have only two of the desirable

423

features of a GH cut tree. However, it is known that

for a directed graph of n nodes, there can be as many

as (n + 2)(n - 1)/2 distinct minimum cut values in

the set of minimum cut values taken over all the

n(n - 1) ordered pairs of nodes [FrFr]. Hence there

seems to be little hope to be able to build cut trees

for directed graphs in worst case time much better

than we have achieved.

For all these cut trees, as well as for the Gomory-

Hu tree, we describe an extension that represents al2

minimum cuts for any pair of nodes (and not only

one cut per pair).

Throughout the paper we denote by f(s,t) the

maximum flow (or the minimum cut) value between

s and t in an edge-capacitated graph. If a cut (S, 3)

is said to be a min (s,t)-cut, then s E S and t E 3.

For a node-weighted graph, fst denotes the minimum

weighted node cut value (or the maximum flow) sep-

arating s from t.

Our first two results involve an additional type

of cut tree on a directed graph, called the /3 cut

tree, studied by Schnorr [Sch]. Section 2 describes

the /3 cut tree and Schnorr’s construction. Sec-

tion 3 describes cut trees for node weighted graphs,

and Section 4 describes cut trees for directed edge-

capacitated graphs. In both sections, we first define

cut trees in these types of graphs, and then show

how to construct them efficiently. Finally, Section

5 discusses extensions of cut trees to solve the all-

minimum-cuts problem.

2 The p Cut Tree

The generalization of cut trees to different types of

graphs involve simulating and speeding up a cut tree

construction algorithm due to C.P.Schnorr [Sch].

This section describes Schnorr’s method.

For a directed graph G with n nodes, let ,8(i, j) be

the minimum between the max flow from i to j and

the max flow from j to i, and let the P-cut between

i and j be a directed cut separating i from j whose

value is ,B(;, j). Schnorr [Sch] showed that the ,B cuts

and values between all of the n(n-1)/2 possible pairs

of nodes can be represented by a directed cut tree

2” that is very similar to the Gomory-Hu cut tree.

For every pair of nodes (2, y), if e is the minimum

weighted edge on the (undirected) path from z to y

in Tp, then the two components of Tp - e define a

P-cut between x and y (the direction of the cut is

determined by the direction of e). Figure 2 shows a

directed graph G and its /3 cut tree Td.

However, whereas the GH cut tree can be com-

puted with only n - 1 flow computations, Schnorr’s

computation of a p cut tree requires O(n log n) flow

computations . Schnorr shows that these O(nlog n)

flow computations can be implemented with some

tricks to take O(n4) amortized time using particu-

lar flow algorithms. Note that an algorithm that

requires only O(n) max flow computations is always

at least equal or superior (in its running time) to an

O(n4) time algorithm that requires O(nlogn) max

flow computations; moreover, it lends itself to any

further improvements in max flow techniques.

We now give a high level description of Schnorr’s

algorithm for constructing a p cut tree for any di-

rected graph G with n nodes. We first need the

following definition:

Definition : For a given subset of nodes U C V, we

say that (A, x) is a minimum U cut if it the mini-

mum weighted cut taken over all cuts in G that split

the nodes of U.

Note that a min U-cut is a cut in G which splits U.

The j3 cut tree algorithm [Sch] :

Input: A directed graph G

Output: A ,G’ cut tree n/, of G.

l Let No be a tree represented by a single supern-

ode containing {V}.

l Given -uk, construct n/k+1 as follows:

Let U be any supernode in Nk. Contract each

424

G: To:

Figure 2: A directed graph G and its /3 cut tree Tp. Tp was obtained by selecting the following sequence of

min U-cuts (directed from left to right):(d c e, abf), (abcde, f), (acdef, b), (e, abcdf) and (de, abcf).

component of & - U in G and compute a min-

imum U-cut in the contracted graph. Suppose

that (Xk+r, Xk+r) is a minimum U-cut, directed

from Xk+l to Xk+l, and that its weight is ak+r.

Reconstruct n/ k+r by splitting U into two nodes

and adding an edge

(u n xk+d - (UnXk+l)

of weight ok+r. Attach the components of

/21;, - U either to (U f~Xk+l) or to (UnXk+r), de-

pending on the side of the cut each component

falls in, while preserving the previous weights of

edges.

Example: The p cut tree Tp for the graph G

shown in Figure 2 was obtained by selecting the fol-

lowing sequence of min U-cuts (the cuts are directed

from left to right):(cde, abf), (ubcde, f), (acdef, b),

(e, abcdf) and (de, abcf).

Note that the method computes only n - 1 mini-

mum U-cuts. The key to Schnorr’s original method

is how to efficiently compute these n- 1 minimum U-

cut. Using a clever idea, Schnorr showed how to do

this efficiently so that the entire algorithm requires

only O(nlog n) max flow computations, rather than

the obvious n(n - 1) flows. Since it is not relevant

for our purposes, we do not describe it here.

Remark- Schnorr’s original fl tree construction

algorithm can be sped up by using and adapting

a new method, recently proposed by Cheng and

Hu ([ChHu],[GN2]). By using this method, the

general p tree construction algorithm can be im-

plemented with only O(n) maximum flows, as op-

posed to O(nlog n) maximum flows that the origi-

nal method requires. Although this method could

have been used in Theorems 3.2 and 4.2, the solu-

tions presented here are simpler and use fewer flow

computations.

3 Cut Trees of Node Weighted

(Undirected) Graphs

Let G = (V7E) b e an undirected, node-weighted

graph, where w; is the weight at node i. The maxi-

mum flow, or the minimum node cut, between a pair

of nodes (i, j) is defined as

f;j - C;j = min{w;, Wj, K&{Ws>)

where S is any set of nodes whose removal discon-

nects i from j and ws = CkES Wk (S is called un

(i,j) separating set). This definition is the natural

one when the nodes are weighted, but it differs from

the definition of a node cut for unweighted nodes, be-

cause the unweighted node cut between node i and j

is not permitted to contain either i or j; allowing ei-

ther ‘of those to be in the cut trivializes the problem

in the unweighted case, but not in our more general

weighted case.

The problem of finding all possible minimum cut

values between pairs of nodes in an undirected node-

weighted graph has been solved by Granot and Has-

sin [GrH]. They gave a method that computes these

425

values with only n - 1 maximum flow computations

and represents them in an equivalent flow tree, which

is not a cut tree in the sense defined here. The ques-

tion of a cut tree was not addressed there.

In this section we show how to construct a node

cut tree T,, for such graphs with only O(n) maximum

flow computations. Since a node cut is a subset of

the nodes (as opposed to an edge cut which is a par-

tition of the nodes into two sets), we have to define

precisely what we mean by a “node cut tree”, i.e.

how can a set of n - 1 node cuts be represented by

a tree T,,, and we have to state what the mechanism

is for retrieving a cut from this tree.

A node cut tree T, of a graph G is a directed

tree whose vertices are {u, ~‘17.~ f V}, such that for

every pair of nodes (ij) (i,j E V), the weight of the

minimum edge e on the undirected path from i to j’

in T, is f;j. Let (X, x), d irected from X to z, be the

(i, j’) cut in T,, defined by the removal of edge e from

the tree (the direction of the cut is defined by the

direction of e in T,,; w.l.o.g, if e is directed from the

subtree that contains i to the subtree that contains

j’, then X is the side of the cut that contains i); then

the set of all nodes u such that u E X, u’ E x is a

minimum (i,j)-separating set in G (that is, a set of

nodes whose removal disconnects i from j in G).

In Figure 3 we show a node weighted (undirected)

graph G and its node cut tree T,- Consider, for ex-

ample, the pair (b, d). A minimum (b, d) separating

set in G can be obtained by deleting the edge (b, cl’)

from T,. This deletion identifies the nodes (a, c> as

a minimum (b, d)-separating set in G since both a, a’

and c, c’ are partitioned by it.

Typically, a node weighted (undirected) graph G is

transformed into an edge-weighted (directed) graph

6 as follows: each node u of weight 20, in G splits

into two nodes u and u’ in G which are connected by

a directed edge (u, u’) of weight w,; in addition, each

edge (u, V) in G is transformed in G’into two directed

edges (u’,~) and (v’, u), both with an infinite weight,

i.e. wUfV = w,t, = co.

Note that if f(s,t) d enotes the maximum flow

from s into t in G then {(i, j’) = f(‘, i’) = fij; also,

as we will show in Lemma 3.2, if (X,x) is a mini-

mum (i,j’)-cut in G’ with i f X, j’ E r, then the

set S = {u/u E X, u’ E r} is a minimum weighted

(ij) separating set in G. Hence, an edge cut tree for

G’ suits the definition of a node cut tree for G.

Since e is a directed graph, the Gomory-Hu

method cannot be applied in this case. However,

in Theorem 3.1 below we show that such a tree ex-

ists and in Theorem 3.2 we show that it can be con-

structed efficiently. We first state the following Lem-

mas (Lemmas 3.2 and 3.3 are straightforward and

left without proofs):

Lemma 3.1 Let (u*, ?I*) be any pair of nodes in C!?

such that u” E (u, u’], v* E {v, v’} and u # v. Then,

p(u*,v*) z min{ft(u*,v*),~(v*,zb*)} = fUv.
Also, ,B(u, u’) = min{w,, ‘uI~(~)} where wNcU) is the

sum of weights of u’s neighbors in G.

Proof: For any pair of nodes (u,v) in G, u # V,

let MU, = mins~v\(U,+,){ws} where 5’ is any subset

of nodes (excluding u and v) whose removal discon-

nects u form ‘L, in G, and ws = Cieszu; (.A&,, is the

minimum weighted node cut between u and u, when

we exclude the possibility of removing either u or 3).

f(u’, V) = f((z1’, u) = M,, , and clearly

f7u,u’) = wu, ft(v,‘u’) = w,; therefore ~(u,v) =

min{w,, MUI)}, ~(u’,TJ’) = min{M,,, 20,). Hence,

for u # v the lemma follows since p(u*, v*) =

min{j(u*, v*), f(u*, u*)} = min{w,, ww,, A&,} =

f *
Nyte that f(u,u’) = w, as (u,u’) is the only edge

out of u and into u’- Also, if ~1,. . .vk are the

neighbors of u in G, then there are k disjoint paths

from u’ to u, all of the type U' + vi -+ V: --t U,

and each can flow w,,~ units, yielding the total of

WN(~). Moreover, the flow out of u’ can not ex-

ceed wN(=) since the total capacity out of the neigh-

426

1 5

a b

G:

Iisl

T,:

d C

6 3

Figure 3: A node weighted (undirected) graph G and its node cut tree T,. The sequence of cuts that were

selected for constructing T,, is (cuts are directed from left to right): (a, a’bb’cc’dd’), (abb’cc’dd’, a’),

(c, aa’bb’c’dd’), (aa’bb’cdd’, c’), (acbb’, a’c’dd’), (acb’, a’c’bdd’) and (abb’cd’, a’c’d).

bors of u’ is urNtu), which certainly bounds the flow

out of u’. Hence f72~‘,‘1~) = ZVN(~) implying that

P(u, u’) = min(w,, q+)}. u

Lemma 3.2 Let (Y,F) be a cut in G with finite

weight, and define Sy = {u/u E Y, u’ E F}. Then:

(.f) The weight of (Y,F) equals CkEsy Wk, and (2)

For any s* E Y, t* E P, where s* E (s, s’) and

t* E (t, t’}, Sy is an (s, t) sepamting set in G.

Lemma 3.3 Let (X,x) be a ,O cut between s and

t’ in G’ directed from X to x. The subset of nodes

Sx = {ulu E X, u’ f x} is a minimum weighted

(s, t) sepamting set in G.

Theorem 3.1 For any undirected, node weighted

graph G there exists a node cut tree T,.

Proof: It follows from Lemma 3.1 that p(i, j’) =

fij for any pair (i,j) in G, and from Lemma 3.3 that

a /3 cut separating i from j’ is a minimum weight

(i, j) node cut in G. Hence, a ,O cut tree of G is a

node cut tree of G, and the existence of 27, follows,

as a ,O cut tree exists for any directed graph [Sch]. 0

How efficiently can T, be constructed? Clearly T,

can be constructed (by directly applying Schnorr’s

method) with O(1 g) n 0 n max flow computations on

G’. However, the algorithm of Granot and Hassin

[GrH] builds th e e Q uivalent flow tree of G with only

n- 1 flow computations. We now show how to use

it so that the p cut tree algorithm of Schnorr can

be simulated with only 2n - 1 additional max flow

computations, yielding a method that builds the cut

tree with 2n - 3 = O(n) max flows.

The idea for devising a faster method is to use

Lemma 3.1 which says that the p value between

any two nodes (primed or unprimed) in G’ is really

the flow value between the corresponding unprimed

nodes in G; also, the p value between u and u’ in G

is the minimum between the weight of u in G and

the sum of the weights of u’s neighbors in G and thus

can be easily computed from the input graph with

no flow computation. Hence, all j3 values in G are

known once the max flow values in G are known.

Now, recall that the time dominant step in Schnorr’s

p cut tree algorithm is the one that finds a min U-

cut for a given subset U (the minimum cut in G that

splits U). But once all p values are known, this step

requires only a single max flow computation since we

know in advance which pair among the nodes of U

gives a minimum U-cut.

Using this idea, we can construct a node cut tree

as follows: First, find an equivalent flow tree for

G by applying the Granot-Hassin algorithm. Then

construct the graph G and for each pair of nodes

(u*,zI*> in the G, u” E {u,u’}, V” E {z),~‘}, compute

,8(u*, v*) using flow values obtained from the equiva-

lent flow tree (by the formulas given in Lemma 3.1).

Finally, simulate Schnorr’s p cut tree algorithm :

whenever a min U cut is to be found, use the pre-

computed /3 values to find the pair of nodes from I’

427

whose p value is the smallest over all pairs, and com-

pute a single minimum cut in G between this pair of

nodes. Hence we get

Theorem 3.2 The node cut tree T, of an undirected

node-weighted graph G can be computed with at most

3n-2 flow computations.

Proof: The first step requires TZ - 1 maximum

flows, and the simulation requires 2n - 1 max flows

since the number of nodes in G’ is 2n and Schnorr’s

method computes 2n - 1 minimum U-cut computa-

tions. Cl

Example: Consider the graph G depicted in Fig-

ure 3. To construct its node cut tree, we first apply

the transformation (not shown here) and then caku-

late the p values in the transformed graph (via the

Granot-Hassin algorithm and Lemma 3.1) and get:

@(a,4 = P(a’, 2) = 1 for

x E {a’, b, b’, c, 2, d, d’),

/?(c,x) = ,d(c’,x) = 3 for z E {b, b’,c’,d,d’},

P(b,d) = P(b’,d) = P(b,d’) = ,B(b’,d’) = 4.

Given these values, the tree is constructed by the fol-

lowing sequence of cuts (directed from left to right):

(a, a’bb’cc’dd’), (abb’cc’dd’, a’), (c, aa’bb’c’dd’),

(aa’bb’cdd’, c’), (acbb’, a’c’dd’), (acb’, a’c’bdd’) and

(abb’cd’, a’c’d). The final tree T, is shown in Fig-

ure 3.

Remarks - Note that although the node case was

reduced to a directed graph, the result obtained is

stronger than that obtained in the case of a general

directed graph discussed in the next section. That

is, in the node weighted case n flows suffice, whereas

in the general directed graph case O(n’) flows are

needed. We also note that the case where both nodes

and edges are weighted can be handled by the above

techniques.

4 Cut Trees of Directed Graphs

Let G = (V,E)b e an edge capacitated directed graph

where for any (i,j) E E, wij is the capacity on edge

(i, j}. j(s, t) is the maximum flow value from s to t,

and C(s,t) = j(s,t) is the minimum cut separating

s from t (i.e. the cut is directed from s to t; note

that in the context of directed graphs the direction

is significant). The Gomory-Hu method cannot be

applied to directed graphs; in fact, it can be shown

that a directed graph can have (n - l)(n + 2)/2 dif-

ferent flow values ([FrF’r]), whereas in an undirected

graph there can be at most n - 1 distinct flow val-

ues. Hence, it seems that the determination of all

possible flow values requires O(n2) flow computa-

tions, and that a set of minimum cuts that contains

at least one cut for each pair of nodes must consist

of O(n2) cuts. But is there a collection of cuts which

is nicely structured (i.e. representable by trees) that

contains at least one minimum cut for each pair of

nodes? Such a nicely structured set of cuts would

more compactly represent the desired minimum cuts

than if each cut were represented separately, while

still allowing O(n) time to retrieve a minimum cut

for each pair of nodes.

We show that a collection of n(n - 1) cuts with

the above property exists. This collection of cuts can

be represented by a family of n trees Tl, . . . , T,, one

for each node. For a given node s, T, is a directed

weighted cut tree rooted at s that contains all in-

formation concerning jlow values and minimum cuts

directed from s to any other node in the graph. That

is, for any node t, if e is the minimum weight edge

on the path from s to 5 in T,, then the maximum

flow from s to t in G is the weight of e, and the

two components of T, - e form a minimum cut that

separates s from t in G.

The Family of Trees

Definition: For an arbitrary vertex s E V, de-

fine the edge-weighted graph G” = (V, Es) as follows:

428

ES = E u {(IL, s)lu E V, u # s}, where w,, = co.

That is, in addition to the original set E, all nodes

but s are connected to s by an edge, directed into s,

with a very large capacity. Let f’(s,j) denote the

value of the maximum flow from s to j in G”, and let

Cs(s, j) denote the minimum cut separating s from

j in G”. The following lemma is straightforward:

Lemma 4.1 A cut C is a minimum (directed) cut

separating s from j in G” ifs it is a minimum cut

that separates s from j in G. Also, ps(s, j) z

min{f’(s,j>, f”(j, 41 = f(G)- Hence, any hj)
P-cut in G” is a minimum (s,j)-cut in G.

Theorem 4.1 For any node s in a directed graph

G, there exists a cut tree T, that represents minimum

cuts for all oredered pairs (s, j).

Proof: Consider the p cut tree of G”. It repre-

sents, for any node j, one (sj) p-cut in G” and the

value /P(s,j). But, from Lemma 4.1, an (s,j) P-cut

in Gs is a minimum (s,j) cut in G, and ps(s, j) =

f(s, j). Hence, the p cut tree of G” is the desired

cut tree T,, 0

Example: Consider the graph from Figure 2. If

we let s = b, then the ,0 cut tree Tb of Gb is the tree

shown in Figure 4(i).

Theorem 4.1 implies that we can apply Schnorr’s

algorithm to the transformed graph G” to obtain T,.

However, Schnorr’s method solves O(nlogn) maxi-

mum flow problems although the tree represents only

n- 1 relevant minimum cuts. We next show that, in

this special case, Schnorr’s algorithm can be sped up

and that T, can be constructed with only n - 1 flow

computations. As opposed to Schnorr’s method, in

our algorithm, instead of picking any supernode U

in ,/k for further partitioning, we pick at each stage

the unique supernode that contains s. The other su-

per-nodes are never partitioned further. Therefore,

the final tree ‘r, may contain supernodes which do

not contain s but which contain more than one node

(the cut tree shown in Figure 4(ii) for s = b is such

a tree). Our improvement of Schnorr’s algorithm

for this special case is based on the following lemma

(given without a proof):

Lemma 4.2 Let U C V with s E U, and let (A, A)

be a minimum U cut in G”. Then there is a node

j E U such that (A, x) is an (s,j)-minimum cut in

G.

Lemma 4.2 suggests that if s E U, then any min-

imum U cut in G” is an (s,j) minimum cut in G for

some j E U. Thus, to find a minimum U cut in G”

we would simply have to find the u that minimizes

f(s, U) over all u’s in U, and for this u any minimum

(s,u) cut in G will be an appropriate choice.

Our algorithm uses a representation, due to J.C.

Picard and M. Queyranne [PQ], that represents all

minimum (s,t) cuts for a given pair of nodes (s,t).

We outline their method and its main features here:

At a cost of one flow computation from s to t plus an

additional O(m) time one can represent al2 minimum

(s,t) cuts in a DAG (D irected Acyclic Graph) of size

O(n). We denote it by DAG,,t. Each node (“supern-

ode”) in DAG,,t corresponds to a set of nodes in the

original graph, and these supernodes partition the

original node set of G. The supernode containing t

is of in-degree 0, the supernode containing s is of

out-degree 0.

There is a l-l correspondence between the set of all

closed sets in the DAG and the set of all minimum

(s,t) edge cuts in G, where a closed set C is a set of

nodes such that if i E C then successors(i) c C. A

cut (S, S) separating s from t is a minimum (s,t)-cut

if and only if S is a closed set in the DAG containing

s and not t.

Given a maximum flow f from s to t on the

graph G = (V,E), the DAG is constructed from

the augmentation graph H = (V,E’) defined by

f. The DAG is obtained from H by collapsing s

and successors(s) into a single supernode, collaps-

ing t and predecessors(t) into a single supernode,

collapsing each of the remaining strongly connected

429

components into a supernode, while maintaining the

relations between supernodes to be as in H. Given

such a representation, it is possible to select, in O(n)

time, one (s,t) cut. In particular, it is easy to select

one (s, t) cut which does not split certain subsets of

nodes, if such a cut exists. In this algorithm we use

the DAGs to be able to select cuts with this property.

Algorithm for Constructing T, :

c

Input : A directed graph G,

Output : A cut tree’T,.

we state, without a proof, that I’

T.heorem 4.2 Using ihe ab& algoriihm, T, can be

conlputed by sOlving~(n - 1) m&mum flow problems.

0 start bY computing the- flows

f(%-Qf(V2),- - ., f(s,~fn) and their corre-

sponding DAGs DAGSIV1,. . . , DAG,,,, which

represent all (s, w;) minimum cuts in G.

l Let f(s,~r) = err = min,,ev{f(s, w)). From

DAGS,V1, find one (5, vi)-minimum cut (A, Z);

Let the. tree JV~ be represented by an edge

A -+ A of weight crl.

l Given &, construct n/k++ as follows: Let U

be the supernode in Nk that contains s. If

U = {s} then 57, t n/k. Otherwise, suppose

that Yr,.. . , q are the components created by

the removal of the I edges that are attached to

u in h/k.

Example: In.’ FJig&re 4 we’ show two cut trees

for Gb, where G is the graph depicted in Figure 2.

Either one of the trees can be obtained by our al-

gorithm, depending on the cuts that are selected

at each step. The tree in 4(i) was obtained by

the following sequence of cuts (directed from left to

right): (bcdef, a), fabcde, f), (bdef, ac), (abcef, d),

(bd,acef). The tree in 4(ii) was obtained by the se-

quence: (bcde, af), (abdef, c), (abcef, d), (bed, aef).

Note that it contains a supernode with two nodes.

430

1. Find %+I = f(vk+l) = mi%df(s,u)}

by lookup from the values already com-

puted.

The directed analogue for the Gomory-Hu tree is,

therefore, a family of n partial cut trees Tl, . . . , T,,

one for each node, where T; corresponds to minimum

cuts and flows originated at i. Given a pair of nodes

(i, j}, f($ j) and one minimum cut separating i from

j can be obtained from T; in the usual way.

2. For each j = 1, I, contract the nodes of

Yj in DAGs,v,+, into a single node.
5 Extending Cut Trees for the

3. Find a minimum (s,‘~k+l) cut in the

contracted DAG,,,,,, . Let this cut

be (Xk+r, Xk+r), directed from xk+l to

xk+l - Due to the contraction, the cut

(xk+l , xkfl) is an (5, ?&+I) minimum Cut

which does not cross any Yj, i.e. any Yi

lies either in Xk+r or in Xk+r.

4. Update the tree by splitting U into two

nodes (Xk+r fI u) and (Xk+r n u) and

adding an edge (Xk+r fl U) --+ (xk+l fl U)

Cut trees represent a single minimum cut for each

pair of nodes and can be constructed with n-l flow

computations, whereas for any fixed pair of nodes

(s, t), a single max flow computation with an addi-

tional strongly connected components computation

suffice to obtain a compact representation of the set

of all min (s, t)-cuts, the Picard-Queyranne DAG. In

this section we show an extension of cut trees that

with weight r&+1, and reconnect the com-

ponents Yr) . . . , K according to the follow-

ing rules: if Yj lies in Xk+r then connect

it by Yj +-- (Xk+r n U), and if Yj lies in

Xk+r then connect it by Yj +---- (Xk+rnu);

maintain the previous weights on these

edges.

_:

All Minimum Cut Problem

G) 2 (ii) 2

Figure 4: Two possible cut trees for the directed graph Gb, where G is the graph shown in Figure 2. The

tree (i) is a complete p cut tree of the graph Gb, and the tree (ii) contains all the relevant flow values and

cuts directed from b.

can be used to obtain a representation of all min-

imum cuts for any pair of nodes. We outline the

method; its full description is given in [GNl].

We show how an Extended Cut Tree T can be used

to obtain all (i) DAG s, one for each pair of nodes, by

using only n - 1 flow computations (that are needed

for the cut tree construction) plus 0(m) work per

DAG. This is a large improvement over the obvi-

ous approach which requires one flow computation

to construct,each DAG. We show that the (y) DAGs

can be constructed from a sequence of n- 1 flow com-

putations f(s, t), where each (s,t) corresponds to an

edge in the cut tree T. We consider only undirected

graphs and their Gomory..lIu cut trees; however, the

same technique is app? I:able for the other types of

graphs discussed earlier and their corresponding cut

trees.

Consider an undirected weighted graph G =

(V,E). Let C,,t be th e set of all minimum (s,t) edge-

cuts. Also define (7~1~ as the set of all cuts in G

which are minimum (a,b)-cuts for some pair of nodes

(a,b), i.e. CMIN = u(a,b)fVXV {cab,>. Define the

extended cut tree T as a cut tree of G, associated

with n - 1 DAGs, one for each edge; that is, sup-

pose that in addition to the cut tree we are given

the DAG representation of Cs,tr DAG,,t, for each

tree edge (s, t) E T. We first show that for any (a, b)

not an edge in T, any cut in CQ is in C,,t for some

tree edge (s,t) E T; we give a method to generate

any cut in Ca,b exactly once only from CS,t’~ for tree

edges (s, t) E 2’. Then we claim that for any (a, b)

not an edge in T, DAG,,b that represents Ca,b can be

efficiently constructed from the extended cut tree T.

The details of this construction are given in [GNl].

Definition : Let DAG,,t(X,Y), X, Y c V, de-

note the DAG resulting from DAG,,t by contracting

the set X with all its successors, and contracting the

set Y with all its predecessors.

As s E szLccessors(u) and t E predecessors(u)

Vu, the supernode of out-degree 0 in DAGslt(X,Y)

contains (s U X), and the supernode of in-degree 0

in DAG,,t(X,Y) contains {t U Y}. It is not dif-

ficult to see that any closed set in DAG,J(X, Y)

is a closed set in DAGSlt; in fact, any closed set

in DAG,,t(X,Y) which contains s but not t, is a

closed set in DAG+ which contains (s !J X} but not

{t U Y}. Therefore, DAG+(X, Y) represents all min

(s,t)-cuts in which the set X appears on the s side

and the set Y appears on the t side of the cut.

Theorem 5.1 For a fixed pair of nodes (a, b), let

(WYl) I’. *> (xk, yk) be the k minimum-weight tree

edges along the path between a and b in T. Let

2; ==(the nodes between yi and x;+l along the path,

including yi}, and define yo = a, Xk+l = b (see Fig-

ure 5). Then,

1. A cut (A,A) is a min (a, b)-cut if and only

if it appears (as a closed set) in at least one

DAG,,,vi (a, b) for some 1 5 i 2 k.

2. Let A; = {yo, ~1,. . ., y;-1); then, any mini-

431

a, = y. b= zIc+1

o---- --q)-&----Jg&--- .-. ---G---+-J

Figure 5: The Path between a and b in an Equivalent Flow Tree. (x:1, yl), . . . (xk, yk) are the k

Minimzlm- Weight Edges along the Path.

mum (a,bf-cut appears (as a closed set) in ex-

actly one DAG,;,y; (A;, b) for some 1 5 i 5 k.

Proof : (1) The only if part follows directly

from the definition of DAGziIVi(a, b), because any

closed set in DAG,;,, (a, b) is a minimum (2;, yi)-

cut which separates a from b, and since V’i f(a, b) =

f(x;, yi), it is a minimum (a,b)-cut.

For the if part, note that any min (a,b)-cut (A, A)

must contain the entire set 2; in one or the other side

of the cut; 2:s nodes never split since the minimum

cut value between nodes within 2; is greater than

the value of the cut (A,A). As a E 20 and a E A,

20 C A; similarly, .& c A. Let .Zi be the set with

smallest index which lies in A (such j exists since

Zk c A). AS zj-r 2 A and Zj s A, (A,A) is a

minimum (zcj, yj)-cut and a minimum (a,b)-cut, and

therefore it appears as a closed set containing {xj, a)

and not {yj, b} in DAG,,.,,,(a,b). Hence, any min

(a,b)-cut is a closed set in DAG,,,,(a, b) for some

l<i<k.

(2) DAG,,,,(A;, b) contains all (2;) y;) min-cuts

in which {a, yr, . . . , y;-I}, and hence 20,. . .) Zi-1,

appear on the a side and (y;, b}, and hence

Z;, zk, appear on the b side of the cut. That is,

DAG,i,, (Ai> b) contains all cuts of value f(a, b)

which separate (20,. . . , &-I) from (z;,zk}. From

the argument of (l), any minimum (a,b)-cut sep-

arates (20,. . . , Zj-1) from Zj for a unique j, and

thus this cut appears in exactly one of these DAGs.

cl

Theorem 5.1 implies the following (a proof is given

in [GNl]):

Corollary 5.1 All cuts in CMIN can be generated

in O(nm + n + /CM~U~) time as follows :

For any distinct weight w in the tree, let

D(SlA), * * 4Shrha) be the DAGs which correspond

to all edges in T with the weight w.

For i=l to h, contract ~1 with tl , . . ., sj-1 with

tj-1 in DAGsj,,j (this is the usual type of contrac-

tion) and generate the closed sets in the resulting

DA G.

Theorem 5.1 showed that Ca,b can be enumer-

ated using the extended cut tree T. As the size of

c a,b can be exponential in n, it is often of more use

to produce only the DAG,,b which compactly repre-

sents the min (a,b)-cuts. We know that the DAGs

associated with the edges of minimum weight along

the (a,b) path in T contain the needed information
- they contain all (a,b)-cuts. But there may be an

exponential number of minimum-(a,b) cuts, so how

can we use those DAGs to efficiently create the (a,b)

432

DAG? In [GNl] it is shown that this can be done [H] T. C. Hu, Integer Programming and Network

efficiently, that is Flows, Addison-Wesley, 1969.

Theorem 5.2 Given an extended cut tree T, [HTl D. HareI, RX. Tarjan, Fast Akwrithms for

DAGa,b , for all (y) pairs (a, b), can be found in Finding Nearest Common Ancestors, Siam J.

0(n2m) time, which implies that the amortized cost Computing, vol. 13 (1984), 338-355.

for constructing a single DAG is O(m). [PQ] J. C. Picard, M. Queyranne, On the Struc-

ture of All Minimum Cuts in a Network

References and Applications, Mathematical Program-

ming Study 13 (1980), 8-16.

[Chit] B. Chazelle, Computing on a &ee Tree via

Complexity-Preserving Mappings, Algorith-
[SV] B. Schieber, U. Vishkin, On Finding Lowest

mica (1987) Vol. 2, 337-361.
Common Ancestors: Simplification and Par-

allelization, Siam J. Computing, Vol. 17, 6,

[ChHu] C.K. Cheng, T.C. Hu, Maximum Concur- (1988) 1253-1262.

rent Flow and Minimum Ratio Cut, Tech. Re-

port CS88-141 UC San Diego, Dec. 1988.
[Sch] C. P. Schnorr, Bottlenecks and Edge Connec-

tivity in Unsymmetrical Networks, Siam J.

[FF] L. R. Ford, D. R. ‘Fulkerson, FZows in Net- Computing, 1979, 265-274.

wori&, Princeton University Press, Princeton

N.J. 1962.
ITI R. E. Tarjan, Applications of Path Compres-

sion on BaZanced Trees, 3. ACM, Vol. 26, 4

[FrFr] H. Frank, I.T. Frisch, Communication, (1979), 690-715.

Transmission and Transportation Networks,

Addison-Wesley, 1971.

[GH] R. E. Gomory, T. C. Hu, Multi-Terminal
Network Flows, Siam J. Appl. Math., Vol. 9

(1961), 551-560.

[GrH] F. Granot, R. Hassin, Multi-Terminal Max-

imum Flows in Node-Capacitated Networks,

Discrete Applied Math., Vol. 13 (1986), 157-
163.

El D. Gusfield, Very Simple Methods for All

Pairs Network Flow Analysis, Siam J. Com-

puting, to appear.

[GNl] D. Gusfield, D. Naor, Extracting Muzimal In-

formation about Sets of Minimum Cuts, Tech.

Report CSE-88-14, UC Davis.

[GN2] D. Gusfield, D. N aor, Eficient Algorithms for

Generalized Cut Trees, Tech. Report CSE-89-

5, UC Davis.

433

