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Abstract 

The Gomory-Hu cut tree is a compact and ef- 

ficiently computed representation of selected min- 

imum edge cuts in a weighted undirected graph 

G=(V,E) with n nodes. It represents (y) minimum 

cuts, one for each pair of nodes in G, and can be 

constructed with only n - 1 flow computations. 

In this paper we generalize the types of cut trees 

that can be efficiently constructed. We solve the 

open problem, posed by T-C. Hu [HI, of construct- 

ing with n - 1 flows a cut-tree for minimum node 

weighted cuts in an undirected graph. We then 

show how to build cut-trees that compactly repre- 

sent the minimum edge cuts in directed graphs, par- 

tially solving the open problem of constructing cut- 

trees for weighted edge cuts in directed graphs. We 

also briefly discuss a generalization of the above cut 

trees to efficiently represent all minimum cuts be- 

tween any pair of nodes. 
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1 Introduction and Statement of 

Results 

For an undirected edge-capacitate.d graph G with n 

nodes, Gomory and Hu [GH] showed that the flow 

values (and thus the minimum edge cut values) be- 

tween all of the n(n - 1)/2 pairs of nodes can be 

computed using only n - 1 flow computations. The 

(y) flow values can be represented by a weighted tree 

2’ on n nodes, where for any pair of nodes (z, y), if e 

is the minimum weight edge on the path from x to 

y in T, then the value of the minimum (x, y) cut in 

G is exactly the weight of e. Such a tree is called an 

equivalent flow tree. 

Gomory and Hu further showed that there exists 

an equivalent flow tree, where for every pair of nodes 

(3, y), if e is as above, then the two components of 

2’ - e define a minimum cut between x and y in G. 

Such a tree is called a cut tree[GH]. The cut tree 

compactly represents all (‘;) minimum cut values as 

well as a set of n-l cuts with the property that for 

any pair of nodes (i, j), at least one cut in this set is 

a minimum (i, j) cut, and it can be retrieved quickly 

given (i, j). In Figure 1, an undirected graph G and 

its cut tree 2’ are shown. 

Producing a cut tree (by Gomory-Hu method 

[GH] or Gusfield’s method [G]) or an equivalent flow 
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G: 

Figure 1: A graph G and its cut tree T. 

T: 

tree (by Gusfield’s method [G] or Granot-Hassin’s 

method [GrH]) q re uires only n-l flow computations, 

a large improvement over the obvious approach for 

computing the (;) minimum cuts. 

There are additional cut types that are not 

handled by the Gomory-Hu method, for example 

weighted node cuts or directed cuts. It is natural 

to ask whether a representation, analogous to the 

GH (Gomory Hu) tree, exists for other types of cuts. 

T.C. Ku [H] posed the question of the existence and 

efficient construction of a cut tree representing mini- 

mum node weighted cuts, and left open the question 

of building cut trees for directed graphs. Granot and 

Hassin [GrH] partially answered Hu’s first question, 

constructing with n - 1 flows an equivalent flow tree 

but not a cut tree for node weighted graphs. 

The cut tree problem for directed graphs seems 

somehow different as there can be as many as (n + 

Z)(n- 1)/2 distinct minimum cut values in a directed 

graph with n nodes [FrFr]. Hence, a single small cut 

tree like the GH tree can not possibly represent all 

these values and cuts. However, we will see that 

these cuts can be represented in some compact and 

useful structure. 

1.1 Main Results 

Before we discuss the main results in this paper, note 

that a GH cut tree has three desirable features that 

we would like to achieve in other cut trees: 

l The cut tree takes only O(n) space, and yet 

implicitly represents one minimum cut for any 

pair of nodes. 

l For any pair of nodes, one minimum cut sepa- 

rating the nodes can be extracted in O(n) time 

from the tree. (Also, for any pair of nodes, the 

max flow value between the nodes can be re- 

trieved in O(1) t ime after an O(na(n)) time pre- 

processing of the values in the tree, by using the 

least common ancestor algorithm on weighted 

trees of [HT] or [SV]. A related method to effi- 

ciently retrieve values once the GH tree is known 

can be found in [T] and [Cha].) 

l The cut tree can be constructed n times faster 

than by finding each of the (‘;) cuts separately. 

In this paper we solve the problem posed by Hu 

[H] and show how to construct a cut-tree for mini- 

mum node weighted cuts with only O(n) flows; the 

tree that we construct is of size O(n), and given any 

pair of nodes (i, j), the minimum weight node cut 

between i and j and its value can be found in O(n) 

time. Hence all desirable features of a cut tree xe 
obtained in this case. 

In the case of directed graphs, we construct a fam- 

ily of n trees Tr , . . . , T,, where 97, is a cut tree repre- 

senting the minimum cuts for all ordered pairs (s, j), 

i.e. all ordered pairs whose first node is s. These 

trees therefore represent one directed minimum cut 

for any ordered pair of nodes, in space which is an 

order of n smaller than the obvious representation. 

Further, for any ordered pair (i, j} a minimum cut 

separating i from j can be extracted from T; in O(n) 

time. The construction of each T; requires n - 1 

flows, so these trees have only two of the desirable 
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features of a GH cut tree. However, it is known that 

for a directed graph of n nodes, there can be as many 

as (n + 2)(n - 1)/2 distinct minimum cut values in 

the set of minimum cut values taken over all the 

n(n - 1) ordered pairs of nodes [FrFr]. Hence there 

seems to be little hope to be able to build cut trees 

for directed graphs in worst case time much better 

than we have achieved. 

For all these cut trees, as well as for the Gomory- 

Hu tree, we describe an extension that represents al2 

minimum cuts for any pair of nodes (and not only 

one cut per pair). 

Throughout the paper we denote by f(s,t) the 

maximum flow (or the minimum cut) value between 

s and t in an edge-capacitated graph. If a cut (S, 3) 

is said to be a min (s,t)-cut, then s E S and t E 3. 

For a node-weighted graph, fst denotes the minimum 

weighted node cut value (or the maximum flow) sep- 

arating s from t. 

Our first two results involve an additional type 

of cut tree on a directed graph, called the /3 cut 

tree, studied by Schnorr [Sch]. Section 2 describes 

the /3 cut tree and Schnorr’s construction. Sec- 

tion 3 describes cut trees for node weighted graphs, 

and Section 4 describes cut trees for directed edge- 

capacitated graphs. In both sections, we first define 

cut trees in these types of graphs, and then show 

how to construct them efficiently. Finally, Section 

5 discusses extensions of cut trees to solve the all- 

minimum-cuts problem. 

2 The p Cut Tree 

The generalization of cut trees to different types of 

graphs involve simulating and speeding up a cut tree 

construction algorithm due to C.P.Schnorr [Sch]. 

This section describes Schnorr’s method. 

For a directed graph G with n nodes, let ,8(i, j) be 

the minimum between the max flow from i to j and 

the max flow from j to i, and let the P-cut between 

i and j be a directed cut separating i from j whose 

value is ,B(;, j). Schnorr [Sch] showed that the ,B cuts 

and values between all of the n(n-1)/2 possible pairs 

of nodes can be represented by a directed cut tree 

2” that is very similar to the Gomory-Hu cut tree. 

For every pair of nodes (2, y), if e is the minimum 

weighted edge on the (undirected) path from z to y 

in Tp, then the two components of Tp - e define a 

P-cut between x and y (the direction of the cut is 

determined by the direction of e). Figure 2 shows a 

directed graph G and its /3 cut tree Td. 

However, whereas the GH cut tree can be com- 

puted with only n - 1 flow computations, Schnorr’s 

computation of a p cut tree requires O(n log n) flow 

computations . Schnorr shows that these O(nlog n) 

flow computations can be implemented with some 

tricks to take O(n4) amortized time using particu- 

lar flow algorithms. Note that an algorithm that 

requires only O(n) max flow computations is always 

at least equal or superior (in its running time) to an 

O(n4) time algorithm that requires O(nlogn) max 

flow computations; moreover, it lends itself to any 

further improvements in max flow techniques. 

We now give a high level description of Schnorr’s 

algorithm for constructing a p cut tree for any di- 

rected graph G with n nodes. We first need the 

following definition: 

Definition : For a given subset of nodes U C V, we 

say that (A, x) is a minimum U cut if it the mini- 

mum weighted cut taken over all cuts in G that split 

the nodes of U. 

Note that a min U-cut is a cut in G which splits U. 

The j3 cut tree algorithm [Sch] : 

Input: A directed graph G 

Output: A ,G’ cut tree n/, of G. 

l Let No be a tree represented by a single supern- 

ode containing {V}. 

l Given -uk, construct n/k+1 as follows: 

Let U be any supernode in Nk. Contract each 
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G: To: 

Figure 2: A directed graph G and its /3 cut tree Tp. Tp was obtained by selecting the following sequence of 

min U-cuts (directed from left to right):( d c e, abf), (abcde, f), (acdef, b), (e, abcdf) and (de, abcf). 

component of & - U in G and compute a min- 

imum U-cut in the contracted graph. Suppose 

that (Xk+r, Xk+r) is a minimum U-cut, directed 

from Xk+l to Xk+l, and that its weight is ak+r. 

Reconstruct n/ k+r by splitting U into two nodes 

and adding an edge 

(u n xk+d - (UnXk+l) 

of weight ok+r. Attach the components of 

/21;, - U either to (U f~Xk+l) or to (UnXk+r), de- 

pending on the side of the cut each component 

falls in, while preserving the previous weights of 

edges. 

Example: The p cut tree Tp for the graph G 

shown in Figure 2 was obtained by selecting the fol- 

lowing sequence of min U-cuts (the cuts are directed 

from left to right):(cde, abf), (ubcde, f), (acdef, b), 

(e, abcdf) and (de, abcf). 

Note that the method computes only n - 1 mini- 

mum U-cuts. The key to Schnorr’s original method 

is how to efficiently compute these n- 1 minimum U- 

cut. Using a clever idea, Schnorr showed how to do 

this efficiently so that the entire algorithm requires 

only O(nlog n) max flow computations, rather than 

the obvious n(n - 1) flows. Since it is not relevant 

for our purposes, we do not describe it here. 

Remark- Schnorr’s original fl tree construction 

algorithm can be sped up by using and adapting 

a new method, recently proposed by Cheng and 

Hu ([ChHu],[GN2]). By using this method, the 

general p tree construction algorithm can be im- 

plemented with only O(n) maximum flows, as op- 

posed to O(nlog n) maximum flows that the origi- 

nal method requires. Although this method could 

have been used in Theorems 3.2 and 4.2, the solu- 

tions presented here are simpler and use fewer flow 

computations. 

3 Cut Trees of Node Weighted 

(Undirected) Graphs 

Let G = (V7E) b e an undirected, node-weighted 

graph, where w; is the weight at node i. The maxi- 

mum flow, or the minimum node cut, between a pair 

of nodes (i, j) is defined as 

f;j - C;j = min{w;, Wj, K&{Ws>) 

where S is any set of nodes whose removal discon- 

nects i from j and ws = CkES Wk (S is called un 

(i,j) separating set). This definition is the natural 

one when the nodes are weighted, but it differs from 

the definition of a node cut for unweighted nodes, be- 

cause the unweighted node cut between node i and j 

is not permitted to contain either i or j; allowing ei- 

ther ‘of those to be in the cut trivializes the problem 

in the unweighted case, but not in our more general 

weighted case. 

The problem of finding all possible minimum cut 

values between pairs of nodes in an undirected node- 

weighted graph has been solved by Granot and Has- 

sin [GrH]. They gave a method that computes these 

425 



values with only n - 1 maximum flow computations 

and represents them in an equivalent flow tree, which 

is not a cut tree in the sense defined here. The ques- 

tion of a cut tree was not addressed there. 

In this section we show how to construct a node 

cut tree T,, for such graphs with only O(n) maximum 

flow computations. Since a node cut is a subset of 

the nodes (as opposed to an edge cut which is a par- 

tition of the nodes into two sets), we have to define 

precisely what we mean by a “node cut tree”, i.e. 

how can a set of n - 1 node cuts be represented by 

a tree T,,, and we have to state what the mechanism 

is for retrieving a cut from this tree. 

A node cut tree T, of a graph G is a directed 

tree whose vertices are {u, ~‘17.~ f V}, such that for 

every pair of nodes (ij) (i,j E V), the weight of the 

minimum edge e on the undirected path from i to j’ 

in T, is f;j. Let (X, x), d irected from X to z, be the 

(i, j’) cut in T,, defined by the removal of edge e from 

the tree (the direction of the cut is defined by the 

direction of e in T,,; w.l.o.g, if e is directed from the 

subtree that contains i to the subtree that contains 

j’, then X is the side of the cut that contains i); then 

the set of all nodes u such that u E X, u’ E x is a 

minimum (i,j)-separating set in G (that is, a set of 

nodes whose removal disconnects i from j in G). 

In Figure 3 we show a node weighted (undirected) 

graph G and its node cut tree T,- Consider, for ex- 

ample, the pair (b, d). A minimum (b, d) separating 

set in G can be obtained by deleting the edge (b, cl’) 

from T,. This deletion identifies the nodes (a, c> as 

a minimum (b, d)-separating set in G since both a, a’ 

and c, c’ are partitioned by it. 

Typically, a node weighted (undirected) graph G is 

transformed into an edge-weighted (directed) graph 

6 as follows: each node u of weight 20, in G splits 

into two nodes u and u’ in G which are connected by 

a directed edge (u, u’) of weight w,; in addition, each 

edge (u, V) in G is transformed in G’into two directed 

edges (u’,~) and (v’, u), both with an infinite weight, 

i.e. wUfV = w,t, = co. 

Note that if f(s,t) d enotes the maximum flow 

from s into t in G then {(i, j’) = f(‘, i’) = fij; also, 

as we will show in Lemma 3.2, if (X,x) is a mini- 

mum (i,j’)-cut in G’ with i f X, j’ E r, then the 

set S = {u/u E X, u’ E r} is a minimum weighted 

(ij) separating set in G. Hence, an edge cut tree for 

G’ suits the definition of a node cut tree for G. 

Since e is a directed graph, the Gomory-Hu 

method cannot be applied in this case. However, 

in Theorem 3.1 below we show that such a tree ex- 

ists and in Theorem 3.2 we show that it can be con- 

structed efficiently. We first state the following Lem- 

mas (Lemmas 3.2 and 3.3 are straightforward and 

left without proofs): 

Lemma 3.1 Let (u*, ?I*) be any pair of nodes in C!? 

such that u” E (u, u’], v* E {v, v’} and u # v. Then, 

p(u*,v*) z min{ft(u*,v*),~(v*,zb*)} = fUv. 
Also, ,B(u, u’) = min{w,, ‘uI~(~)} where wNcU) is the 

sum of weights of u’s neighbors in G. 

Proof: For any pair of nodes (u,v) in G, u # V, 

let MU, = mins~v\(U,+,){ws} where 5’ is any subset 

of nodes (excluding u and v) whose removal discon- 

nects u form ‘L, in G, and ws = Cieszu; (.A&,, is the 

minimum weighted node cut between u and u, when 

we exclude the possibility of removing either u or 3). 

f(u’, V) = f((z1’, u) = M,, , and clearly 

f7u,u’) = wu, ft(v,‘u’) = w,; therefore ~(u,v) = 

min{w,, MUI)}, ~(u’,TJ’) = min{M,,, 20,). Hence, 

for u # v the lemma follows since p(u*, v*) = 

min{j(u*, v*), f(u*, u*)} = min{w,, ww,, A&,} = 

f * 
Nyte that f(u,u’) = w, as (u,u’) is the only edge 

out of u and into u’- Also, if ~1,. . .vk are the 

neighbors of u in G, then there are k disjoint paths 

from u’ to u, all of the type U' + vi -+ V: --t U, 

and each can flow w,,~ units, yielding the total of 

WN(~). Moreover, the flow out of u’ can not ex- 

ceed wN(=) since the total capacity out of the neigh- 
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Figure 3: A node weighted (undirected) graph G and its node cut tree T,. The sequence of cuts that were 

selected for constructing T,, is (cuts are directed from left to right): (a, a’bb’cc’dd’), (abb’cc’dd’, a’), 

(c, aa’bb’c’dd’), (aa’bb’cdd’, c’), (acbb’, a’c’dd’), (acb’, a’c’bdd’) and (abb’cd’, a’c’d). 

bors of u’ is urNtu), which certainly bounds the flow 

out of u’. Hence f72~‘,‘1~) = ZVN(~) implying that 

P(u, u’) = min(w,, q+)}. u 

Lemma 3.2 Let (Y,F) be a cut in G with finite 

weight, and define Sy = {u/u E Y, u’ E F}. Then: 

(.f) The weight of (Y,F) equals CkEsy Wk, and (2) 

For any s* E Y, t* E P, where s* E (s, s’) and 

t* E (t, t’}, Sy is an (s, t) sepamting set in G. 

Lemma 3.3 Let (X,x) be a ,O cut between s and 

t’ in G’ directed from X to x. The subset of nodes 

Sx = {ulu E X, u’ f x} is a minimum weighted 

(s, t) sepamting set in G. 

Theorem 3.1 For any undirected, node weighted 

graph G there exists a node cut tree T,. 

Proof: It follows from Lemma 3.1 that p(i, j’) = 

fij for any pair (i,j) in G, and from Lemma 3.3 that 

a /3 cut separating i from j’ is a minimum weight 

(i, j) node cut in G. Hence, a ,O cut tree of G is a 

node cut tree of G, and the existence of 27, follows, 

as a ,O cut tree exists for any directed graph [Sch]. 0 

How efficiently can T, be constructed? Clearly T, 

can be constructed (by directly applying Schnorr’s 

method) with O( 1 g ) n 0 n max flow computations on 

G’. However, the algorithm of Granot and Hassin 

[GrH] builds th e e Q uivalent flow tree of G with only 

n- 1 flow computations. We now show how to use 

it so that the p cut tree algorithm of Schnorr can 

be simulated with only 2n - 1 additional max flow 

computations, yielding a method that builds the cut 

tree with 2n - 3 = O(n) max flows. 

The idea for devising a faster method is to use 

Lemma 3.1 which says that the p value between 

any two nodes (primed or unprimed) in G’ is really 

the flow value between the corresponding unprimed 

nodes in G; also, the p value between u and u’ in G 

is the minimum between the weight of u in G and 

the sum of the weights of u’s neighbors in G and thus 

can be easily computed from the input graph with 

no flow computation. Hence, all j3 values in G are 

known once the max flow values in G are known. 

Now, recall that the time dominant step in Schnorr’s 

p cut tree algorithm is the one that finds a min U- 

cut for a given subset U (the minimum cut in G that 

splits U). But once all p values are known, this step 

requires only a single max flow computation since we 

know in advance which pair among the nodes of U 

gives a minimum U-cut. 

Using this idea, we can construct a node cut tree 

as follows: First, find an equivalent flow tree for 

G by applying the Granot-Hassin algorithm. Then 

construct the graph G and for each pair of nodes 

(u*,zI*> in the G, u” E {u,u’}, V” E {z),~‘}, compute 

,8(u*, v*) using flow values obtained from the equiva- 

lent flow tree (by the formulas given in Lemma 3.1). 

Finally, simulate Schnorr’s p cut tree algorithm : 

whenever a min U cut is to be found, use the pre- 

computed /3 values to find the pair of nodes from I’ 
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whose p value is the smallest over all pairs, and com- 

pute a single minimum cut in G between this pair of 

nodes. Hence we get 

Theorem 3.2 The node cut tree T, of an undirected 

node-weighted graph G can be computed with at most 

3n-2 flow computations. 

Proof: The first step requires TZ - 1 maximum 

flows, and the simulation requires 2n - 1 max flows 

since the number of nodes in G’ is 2n and Schnorr’s 

method computes 2n - 1 minimum U-cut computa- 

tions. Cl 

Example: Consider the graph G depicted in Fig- 

ure 3. To construct its node cut tree, we first apply 

the transformation (not shown here) and then caku- 

late the p values in the transformed graph (via the 

Granot-Hassin algorithm and Lemma 3.1) and get: 

@(a,4 = P(a’, 2) = 1 for 

x E {a’, b, b’, c, 2, d, d’), 

/?(c,x) = ,d(c’,x) = 3 for z E {b, b’,c’,d,d’}, 

P(b,d) = P(b’,d) = P(b,d’) = ,B(b’,d’) = 4. 

Given these values, the tree is constructed by the fol- 

lowing sequence of cuts (directed from left to right): 

(a, a’bb’cc’dd’), (abb’cc’dd’, a’), (c, aa’bb’c’dd’), 

(aa’bb’cdd’, c’), (acbb’, a’c’dd’), (acb’, a’c’bdd’) and 

(abb’cd’, a’c’d). The final tree T, is shown in Fig- 

ure 3. 

Remarks - Note that although the node case was 

reduced to a directed graph, the result obtained is 

stronger than that obtained in the case of a general 

directed graph discussed in the next section. That 

is, in the node weighted case n flows suffice, whereas 

in the general directed graph case O(n’) flows are 

needed. We also note that the case where both nodes 

and edges are weighted can be handled by the above 

techniques. 

4 Cut Trees of Directed Graphs 

Let G = (V,E)b e an edge capacitated directed graph 

where for any (i,j) E E, wij is the capacity on edge 

(i, j}. j(s, t) is the maximum flow value from s to t, 

and C(s,t) = j(s,t) is the minimum cut separating 

s from t (i.e. the cut is directed from s to t; note 

that in the context of directed graphs the direction 

is significant). The Gomory-Hu method cannot be 

applied to directed graphs; in fact, it can be shown 

that a directed graph can have (n - l)(n + 2)/2 dif- 

ferent flow values ([FrF’r]), whereas in an undirected 

graph there can be at most n - 1 distinct flow val- 

ues. Hence, it seems that the determination of all 

possible flow values requires O(n2) flow computa- 

tions, and that a set of minimum cuts that contains 

at least one cut for each pair of nodes must consist 

of O(n2) cuts. But is there a collection of cuts which 

is nicely structured (i.e. representable by trees) that 

contains at least one minimum cut for each pair of 

nodes? Such a nicely structured set of cuts would 

more compactly represent the desired minimum cuts 

than if each cut were represented separately, while 

still allowing O(n) time to retrieve a minimum cut 

for each pair of nodes. 

We show that a collection of n(n - 1) cuts with 

the above property exists. This collection of cuts can 

be represented by a family of n trees Tl, . . . , T,, one 

for each node. For a given node s, T, is a directed 

weighted cut tree rooted at s that contains all in- 

formation concerning jlow values and minimum cuts 

directed from s to any other node in the graph. That 

is, for any node t, if e is the minimum weight edge 

on the path from s to 5 in T,, then the maximum 

flow from s to t in G is the weight of e, and the 

two components of T, - e form a minimum cut that 

separates s from t in G. 

The Family of Trees 

Definition: For an arbitrary vertex s E V, de- 

fine the edge-weighted graph G” = (V, Es) as follows: 
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ES = E u {(IL, s)lu E V, u # s}, where w,, = co. 

That is, in addition to the original set E, all nodes 

but s are connected to s by an edge, directed into s, 

with a very large capacity. Let f’(s,j) denote the 

value of the maximum flow from s to j in G”, and let 

Cs(s, j) denote the minimum cut separating s from 

j in G”. The following lemma is straightforward: 

Lemma 4.1 A cut C is a minimum (directed) cut 

separating s from j in G” ifs it is a minimum cut 

that separates s from j in G. Also, ps(s, j) z 

min{f’(s,j>, f”(j, 41 = f(G)- Hence, any hj) 
P-cut in G” is a minimum (s,j)-cut in G. 

Theorem 4.1 For any node s in a directed graph 

G, there exists a cut tree T, that represents minimum 

cuts for all oredered pairs (s, j). 

Proof: Consider the p cut tree of G”. It repre- 

sents, for any node j, one (sj) p-cut in G” and the 

value /P(s,j). But, from Lemma 4.1, an (s,j) P-cut 

in Gs is a minimum (s,j) cut in G, and ps(s, j) = 

f(s, j). Hence, the p cut tree of G” is the desired 

cut tree T,, 0 

Example: Consider the graph from Figure 2. If 

we let s = b, then the ,0 cut tree Tb of Gb is the tree 

shown in Figure 4(i). 

Theorem 4.1 implies that we can apply Schnorr’s 

algorithm to the transformed graph G” to obtain T,. 

However, Schnorr’s method solves O(nlogn) maxi- 

mum flow problems although the tree represents only 

n- 1 relevant minimum cuts. We next show that, in 

this special case, Schnorr’s algorithm can be sped up 

and that T, can be constructed with only n - 1 flow 

computations. As opposed to Schnorr’s method, in 

our algorithm, instead of picking any supernode U 

in ,/k for further partitioning, we pick at each stage 

the unique supernode that contains s. The other su- 

per-nodes are never partitioned further. Therefore, 

the final tree ‘r, may contain supernodes which do 

not contain s but which contain more than one node 

(the cut tree shown in Figure 4(ii) for s = b is such 

a tree ). Our improvement of Schnorr’s algorithm 

for this special case is based on the following lemma 

(given without a proof): 

Lemma 4.2 Let U C V with s E U, and let (A, A) 

be a minimum U cut in G”. Then there is a node 

j E U such that (A, x) is an (s,j)-minimum cut in 

G. 

Lemma 4.2 suggests that if s E U, then any min- 

imum U cut in G” is an (s,j) minimum cut in G for 

some j E U. Thus, to find a minimum U cut in G” 

we would simply have to find the u that minimizes 

f(s, U) over all u’s in U, and for this u any minimum 

(s,u) cut in G will be an appropriate choice. 

Our algorithm uses a representation, due to J.C. 

Picard and M. Queyranne [PQ], that represents all 

minimum (s,t) cuts for a given pair of nodes (s,t). 

We outline their method and its main features here: 

At a cost of one flow computation from s to t plus an 

additional O(m) time one can represent al2 minimum 

(s,t) cuts in a DAG (D irected Acyclic Graph) of size 

O(n). We denote it by DAG,,t. Each node (“supern- 

ode”) in DAG,,t corresponds to a set of nodes in the 

original graph, and these supernodes partition the 

original node set of G. The supernode containing t 

is of in-degree 0, the supernode containing s is of 

out-degree 0. 

There is a l-l correspondence between the set of all 

closed sets in the DAG and the set of all minimum 

(s,t) edge cuts in G, where a closed set C is a set of 

nodes such that if i E C then successors(i) c C. A 

cut (S, S) separating s from t is a minimum (s,t)-cut 

if and only if S is a closed set in the DAG containing 

s and not t. 

Given a maximum flow f from s to t on the 

graph G = (V,E), the DAG is constructed from 

the augmentation graph H = (V,E’) defined by 

f. The DAG is obtained from H by collapsing s 

and successors(s) into a single supernode, collaps- 

ing t and predecessors(t) into a single supernode, 

collapsing each of the remaining strongly connected 
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components into a supernode, while maintaining the 

relations between supernodes to be as in H. Given 

such a representation, it is possible to select, in O(n) 

time, one (s,t) cut. In particular, it is easy to select 

one (s, t) cut which does not split certain subsets of 

nodes, if such a cut exists. In this algorithm we use 

the DAGs to be able to select cuts with this property. 

Algorithm for Constructing T, : 

c 

Input : A directed graph G, 

Output : A cut tree’T,. 

we state, without a proof, that I’ 

T.heorem 4.2 Using ihe ab& algoriihm, T, can be 

conlputed by sOlving~(n - 1) m&mum flow problems. 

0 start bY computing the- flows 

f(%-Qf(V2),- - ., f(s,~fn) and their corre- 

sponding DAGs DAGSIV1,. . . , DAG,,,, which 

represent all (s, w;) minimum cuts in G. 

l Let f(s,~r) = err = min,,ev{f(s, w)). From 

DAGS,V1, find one (5, vi)-minimum cut (A, Z); 

Let the. tree JV~ be represented by an edge 

A -+ A of weight crl. 

l Given &, construct n/k++ as follows: Let U 

be the supernode in Nk that contains s. If 

U = {s} then 57, t n/k. Otherwise, suppose 

that Yr,.. . , q are the components created by 

the removal of the I edges that are attached to 

u in h/k. 

Example: In.’ FJig&re 4 we’ show two cut trees 

for Gb, where G is the graph depicted in Figure 2. 

Either one of the trees can be obtained by our al- 

gorithm, depending on the cuts that are selected 

at each step. The tree in 4(i) was obtained by 

the following sequence of cuts (directed from left to 

right): (bcdef, a), fabcde, f), (bdef, ac), (abcef, d), 

(bd,acef). The tree in 4(ii) was obtained by the se- 

quence: (bcde, af), (abdef, c), (abcef, d), (bed, aef). 

Note that it contains a supernode with two nodes. 
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1. Find %+I = f(vk+l) = mi%df(s,u)} 

by lookup from the values already com- 

puted. 

The directed analogue for the Gomory-Hu tree is, 

therefore, a family of n partial cut trees Tl, . . . , T,, 

one for each node, where T; corresponds to minimum 

cuts and flows originated at i. Given a pair of nodes 

(i, j}, f($ j) and one minimum cut separating i from 

j can be obtained from T; in the usual way. 

2. For each j = 1, . . . . I, contract the nodes of 

Yj in DAGs,v,+, into a single node. 
5 Extending Cut Trees for the 

3. Find a minimum (s,‘~k+l) cut in the 

contracted DAG,,,,,, . Let this cut 

be (Xk+r, Xk+r), directed from xk+l to 

xk+l - Due to the contraction, the cut 

(xk+l , xkfl) is an (5, ?&+I) minimum Cut 

which does not cross any Yj, i.e. any Yi 

lies either in Xk+r or in Xk+r. 

4. Update the tree by splitting U into two 

nodes (Xk+r fI u) and (Xk+r n u) and 

adding an edge (Xk+r fl U) --+ (xk+l fl U) 

Cut trees represent a single minimum cut for each 

pair of nodes and can be constructed with n-l flow 

computations, whereas for any fixed pair of nodes 

(s, t), a single max flow computation with an addi- 

tional strongly connected components computation 

suffice to obtain a compact representation of the set 

of all min (s, t)-cuts, the Picard-Queyranne DAG. In 

this section we show an extension of cut trees that 

with weight r&+1, and reconnect the com- 

ponents Yr ) . . . , K according to the follow- 

ing rules: if Yj lies in Xk+r then connect 

it by Yj +-- (Xk+r n U), and if Yj lies in 

Xk+r then connect it by Yj +---- (Xk+rnu); 

maintain the previous weights on these 

edges. 

_: 
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G) 2 (ii) 2 

Figure 4: Two possible cut trees for the directed graph Gb, where G is the graph shown in Figure 2. The 

tree (i) is a complete p cut tree of the graph Gb, and the tree (ii) contains all the relevant flow values and 

cuts directed from b. 

can be used to obtain a representation of all min- 

imum cuts for any pair of nodes. We outline the 

method; its full description is given in [GNl]. 

We show how an Extended Cut Tree T can be used 

to obtain all (i) DAG s, one for each pair of nodes, by 

using only n - 1 flow computations (that are needed 

for the cut tree construction) plus 0(m) work per 

DAG. This is a large improvement over the obvi- 

ous approach which requires one flow computation 

to construct,each DAG. We show that the (y) DAGs 

can be constructed from a sequence of n- 1 flow com- 

putations f(s, t), where each (s,t) corresponds to an 

edge in the cut tree T. We consider only undirected 

graphs and their Gomory..lIu cut trees; however, the 

same technique is app? I:able for the other types of 

graphs discussed earlier and their corresponding cut 

trees. 

Consider an undirected weighted graph G = 

(V,E). Let C,,t be th e set of all minimum (s,t) edge- 

cuts. Also define (7~1~ as the set of all cuts in G 

which are minimum (a,b)-cuts for some pair of nodes 

(a,b), i.e. CMIN = u(a,b)fVXV {cab,>. Define the 

extended cut tree T as a cut tree of G, associated 

with n - 1 DAGs, one for each edge; that is, sup- 

pose that in addition to the cut tree we are given 

the DAG representation of Cs,tr DAG,,t, for each 

tree edge (s, t) E T. We first show that for any (a, b) 

not an edge in T, any cut in CQ is in C,,t for some 

tree edge (s,t) E T; we give a method to generate 

any cut in Ca,b exactly once only from CS,t’~ for tree 

edges (s, t) E 2’. Then we claim that for any (a, b) 

not an edge in T, DAG,,b that represents Ca,b can be 

efficiently constructed from the extended cut tree T. 

The details of this construction are given in [GNl]. 

Definition : Let DAG,,t(X,Y), X, Y c V, de- 

note the DAG resulting from DAG,,t by contracting 

the set X with all its successors, and contracting the 

set Y with all its predecessors. 

As s E szLccessors(u) and t E predecessors(u) 

Vu, the supernode of out-degree 0 in DAGslt(X,Y) 

contains (s U X), and the supernode of in-degree 0 

in DAG,,t(X,Y) contains {t U Y}. It is not dif- 

ficult to see that any closed set in DAG,J(X, Y) 

is a closed set in DAGSlt; in fact, any closed set 

in DAG,,t(X,Y) which contains s but not t, is a 

closed set in DAG+ which contains (s !J X} but not 

{t U Y}. Therefore, DAG+(X, Y) represents all min 

(s,t)-cuts in which the set X appears on the s side 

and the set Y appears on the t side of the cut. 

Theorem 5.1 For a fixed pair of nodes (a, b), let 

(WYl) I’. *> (xk, yk) be the k minimum-weight tree 

edges along the path between a and b in T. Let 

2; ==(the nodes between yi and x;+l along the path, 

including yi}, and define yo = a, Xk+l = b (see Fig- 

ure 5). Then, 

1. A cut (A,A) is a min (a, b)-cut if and only 

if it appears (as a closed set) in at least one 

DAG,,,vi (a, b) for some 1 5 i 2 k. 

2. Let A; = {yo, ~1,. . ., y;-1); then, any mini- 
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a, = y. b= zIc+1 

o---- --q)-&----Jg&--- .-. ---G---+-J 

Figure 5: The Path between a and b in an Equivalent Flow Tree. (x:1, yl), . . . (xk, yk) are the k 

Minimzlm- Weight Edges along the Path. 

mum (a,bf-cut appears (as a closed set) in ex- 

actly one DAG,;,y; (A;, b) for some 1 5 i 5 k. 

Proof : (1) The only if part follows directly 

from the definition of DAGziIVi(a, b), because any 

closed set in DAG,;,, (a, b) is a minimum (2;, yi)- 

cut which separates a from b, and since V’i f(a, b) = 

f(x;, yi), it is a minimum (a,b)-cut. 

For the if part, note that any min (a,b)-cut (A, A) 

must contain the entire set 2; in one or the other side 

of the cut; 2:s nodes never split since the minimum 

cut value between nodes within 2; is greater than 

the value of the cut (A,A). As a E 20 and a E A, 

20 C A; similarly, .& c A. Let .Zi be the set with 

smallest index which lies in A (such j exists since 

Zk c A). AS zj-r 2 A and Zj s A, (A,A) is a 

minimum (zcj, yj)-cut and a minimum (a,b)-cut, and 

therefore it appears as a closed set containing {xj, a) 

and not {yj, b} in DAG,,.,,,(a,b). Hence, any min 

(a,b)-cut is a closed set in DAG,,,,(a, b) for some 

l<i<k. 

(2) DAG,,,,(A;, b) contains all (2;) y;) min-cuts 

in which {a, yr, . . . , y;-I}, and hence 20,. . .) Zi-1, 

appear on the a side and (y;, b}, and hence 

Z;, zk, appear on the b side of the cut. That is, 

DAG,i,, (Ai> b) contains all cuts of value f(a, b) 

which separate (20,. . . , &-I) from (z;,zk}. From 

the argument of (l), any minimum (a,b)-cut sep- 

arates (20,. . . , Zj-1) from Zj for a unique j, and 

thus this cut appears in exactly one of these DAGs. 

cl 

Theorem 5.1 implies the following (a proof is given 

in [GNl]): 

Corollary 5.1 All cuts in CMIN can be generated 

in O(nm + n + /CM~U~) time as follows : 

For any distinct weight w in the tree, let 

D(SlA), * * 4Shrha) be the DAGs which correspond 

to all edges in T with the weight w. 

For i=l to h, contract ~1 with tl , . . ., sj-1 with 

tj-1 in DAGsj,,j (this is the usual type of contrac- 

tion) and generate the closed sets in the resulting 

DA G. 

Theorem 5.1 showed that Ca,b can be enumer- 

ated using the extended cut tree T. As the size of 

c a,b can be exponential in n, it is often of more use 

to produce only the DAG,,b which compactly repre- 

sents the min (a,b)-cuts. We know that the DAGs 

associated with the edges of minimum weight along 

the (a,b) path in T contain the needed information 
- they contain all (a,b)-cuts. But there may be an 

exponential number of minimum-(a,b) cuts, so how 

can we use those DAGs to efficiently create the (a,b) 
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DAG? In [GNl] it is shown that this can be done [H] T. C. Hu, Integer Programming and Network 

efficiently, that is Flows, Addison-Wesley, 1969. 

Theorem 5.2 Given an extended cut tree T, [HTl D. HareI, RX. Tarjan, Fast Akwrithms for 

DAGa,b , for all (y) pairs (a, b), can be found in Finding Nearest Common Ancestors, Siam J. 

0(n2m) time, which implies that the amortized cost Computing, vol. 13 (1984), 338-355. 

for constructing a single DAG is O(m). [PQ] J. C. Picard, M. Queyranne, On the Struc- 
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