
CSE 5311 Notes 2:  Binary Search Trees 
 

(Last updated 1/30/17 10:44 AM) 
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What two single rotations are equivalent? 
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(BOTTOM-UP) RED-BLACK TREES 
 
A red-black tree is a binary search tree whose height is logarithmic in the number of keys stored. 
 
1. Every node is colored red or black.  (Colors are only examined during insertion and deletion) 
 
2. Every “leaf” (the sentinel) is colored black. 
 
3. Both children of a red node are black. 
 
4. Every simple path from a child of node X to a leaf has the same number of black nodes. 
 
 This number is known as the black-height of X (bh(X)). 
 
Example: 
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Observations: 
 
1. A red-black tree with n internal nodes (“keys”) has height at most 2 lg(n+1). 
 
2. If a node X is not a leaf and its sibling is a leaf, then X must be red. 
 
3. There may be many ways to color a binary search tree to make it a red-black tree. 
 
4. If the root is colored red, then it may be switched to black without violating structural properties. 
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INSERTION 
 
1. Start with unbalanced insert of a “data leaf” (both children are the sentinel). 
 
2. Color of new node is  _________. 
 
3. May violate structural property 3.  Leads to three cases, along with symmetric versions. 
 
 The x pointer points at a red node whose parent might also be red. 
 
Case 1: 
 

	
	

Case 2: 
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Case 3: 
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Example: 
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Insert 75 

1

40

20 60

13 30 50 70

1510 75x

40

20 60

13 30 50 70

1510 75

x

 
 
Insert 14 

1

40

20 60

13 30 50 70

1510 75

14x

40

20 60

13 30 50 70

1510 75

14

x

1

40

20 60

13 30 50 70

1510 75

14

x Reset to black

 
 
Example: 
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Deletion 
 
Start with one of the unbalanced deletion cases: 
 

1. Deleted node is a “data leaf”. 
 

a. Splice around to sentinel. 
 
b. Color of deleted node? 
 
 Red ⇒ Done 
 
 Black ⇒ Set “double black” pointer at sentinel. 
  Determine which of four rebalancing cases applies. 

 
2. Deleted node is parent of one “data leaf”. 
 

a. Splice around to “data leaf” 
 
b. Color of deleted node? 
 
 Red ⇒ Not possible 
 
 Black ⇒ “data leaf” must be red.  Change its color to black. 

 
3. Node with key-to-delete is parent of two “data nodes”. 
 

a. “Steal” key and data from successor (but not the color). 
 
b. “Delete” successor using the appropriate one of the previous two cases. 
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Case 1: 
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Case 2: 
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Case 3: 
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Case 4: 
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(At most three rotations occur while processing the deletion of one key) 
 
Example: 
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If x reaches the root, then done.  Only place in tree where this happens. 
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If x reaches a red node, then change color to black and done. 
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Delete 10 
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AVL TREES 
 
An AVL tree is a binary search tree whose height is logarithmic in the number of keys stored. 
 
1. Each node stores the difference of the heights (known as the balance factor) of the right and left 

subtrees rooted by the children: 
 

heightright - heightleft 
 

50
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2. A balance factor must be +1, 0, -1 (leans right, “balanced”, leans left). 
 
3. An insertion is implemented by: 
 

a. Attaching a leaf 
 
b. Rippling changes to balance factor: 
 

1. Right child ripple 
 
 Parent.Bal = 0 ⇒ +1 and ripple to parent 
 Parent.Bal = -1 ⇒ 0 to complete insertion 
 Parent.Bal = +1 ⇒ +2 and ROTATION to complete insertion 
 
2. Left child ripple 
 
 Parent.Bal = 0 ⇒ -1 and ripple to parent 
 Parent.Bal = +1 ⇒ 0 to complete insertion 
 Parent.Bal = -1 ⇒ -2 and ROTATION to complete insertion 
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4. Rotations 
 

a. Single (LL) - right rotation at D 
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 Restores height of subtree to pre-insertion number of levels 
 
 RR case is symmetric 

 
 b. Double (LR) 
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  Restores height of subtree to pre-insertion number of levels 
 
  RL case is symmetric 
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Deletion - 
 
 Still have RR, RL, LL, and LR, but two addditional (symmetric) cases arise. 
 
 Suppose 70 is deleted from this tree.  Either LL or LR may be applied. 
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Fibonacci Trees - special case of AVL trees exhibiting two worst-case behaviors - 
 
 1. Maximally skewed.  (max height is roughly log1.618 n =1.44 lg n, expected height is lg n +.25) 
 
 2. θ(log n) rotations for a single deletion. 
 

 

0
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1
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5 6
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TREAPS (CLRS, p. 333) 
 
Hybrid of BST and min-heap ideas 
 

Gives code that is clearer than RB or AVL (but comparable to skip lists) 
 
Expected height of tree is logarithmic (2.5 lg n) 

 
 Keys are used as in BST 
 
 Tree also has min-heap property based on each node having a priority: 
 
  Randomized priority - generated when a new key is inserted 
 
  Virtual priority - computed (when needed) using a function similar to a hash function 
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 Asides:  the first published such hybrid were the cartesian trees of J. Vuillemin, “A Unifying Look 

at Data Structures”, C. ACM 23 (4), April 1980, 229-239.  A more complete explanation appears in 
E.M. McCreight, “Priority Search Trees”, SIAM J. Computing 14 (2), May 1985, 257-276 and 
chapter 10 of M. de Berg et.al.  These are also used in the elegant implementation in M.A. Babenko 
and T.A. Starikovskaya, “Computing Longest Common Substrings” in E.A. Hirsch, Computer 
Science - Theory and Applications, LNCS 5010, 2008, 64-75. 

 
Insertion 
 
 Insert as leaf 
 
 Generate random priority (large range to minimize duplicates) 
 
 Single rotations to fix min-heap property 
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Example:  Insert 16 with a priority of 2 
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After rotations: 
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Deletion 
 
 Find node and change priority to ∞ 
 
 Rotate to bring up child with lower priority.  Continue until min-heap property holds. 
 
 Remove leaf. 
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Delete key 2: 
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AUGMENTING DATA STRUCTURES 
 
Read CLRS, section 14.1 on using RB tree with ranking information for order statistics. 
 
 Retrieving an element with a given rank 
 
 Determine the rank of an element 
 
Problem:  Maintain summary information to support an aggregate operation on the k smallest (or largest) 

keys in O(log n) time. 
 
Example:  Prefix Sum 
 
 Given a key, determine the sum of all keys ≤ given key (prefix sum). 
 
 Solution:  Store sum of all keys in a subtree at the root of the subtree. 
 

 

1 20

15 172

10 19

3 9

2 2 4 4

26 137

30 3020 81

16 16 24 45

21 21
 

  Key Prefix Sum 
  1 1 
  2 3 
  3 6 
  4 10 
  10 20 
  15 35 
  16 51 
  20 71 
  21 92 
  24 116 
  26 142 
  30 172 
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 To compute prefix sum for a key: 
 
  Initialize sum to 0 
 
  Search for key, modifying total as search progresses: 
 
   Search goes left - leave total alone 
 
   Search goes right or key has been found - add present node’s key and left child’s sum to 

total 
 

 Key is 24:  (15 + 20) + (20 + 16) + (24 + 21) = 116 
 
 Key is 10:  (1 + 0) + (10 + 9) = 20 
 
 Key is 16:  (15 + 20) + (16 + 0) = 51 
 
 Variation:  Determine the smallest key that has a prefix sum ≥ a specified value. 

 
Updates to tree: 

 
 Non-structural (attach/remove node) - modify node and every ancestor 
 
 Single rotation (for prefix sum) 
 

 
D ΣD

B ΣB E ΣE

A ΣA C ΣC

B ΣD

A ΣA D ΣC+ΣE+D

C ΣC E ΣE

 
 
 (Similar for double rotation) 

 
General case - see CLRS 14.2, especially “Theorem” 14.1 
 
Interval trees (CLRS 14.3) - a more significant application 
 
 Set of (closed) intervals [low, high] - low is the key, but duplicates are allowed 
 
 Each subtree root contains the max value appearing in any interval in that subtree 
 
 Aggregate operation to support - find any interval that overlaps a given interval [low’, high’] 
 
  Modify BST search . . . 
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  if ptr == nil 
   no interval in tree overlaps [low’, high’] 
 
  if high’ ≥ ptr->low and ptr->high ≥ low’ 
   return ptr as an answer 
 
  if ptr->left != nil and ptr->left->max ≥ low’ 
   ptr := ptr->left 
  else 
   ptr := ptr->right 
 
 Updates to tree - similar to prefix sum, but replace additions with maximums 
 
OPTIMAL BINARY SEARCH TREES 
 
What is the optimal way to organize a static list for searching? 
 
1. By decreasing access probability - optimal static/fixed ordering. 
 
2. Key order - if misses will be “frequent”, to avoid searching entire list. 
 
Other Considerations: 
 
1. Access probabilities may change (or may be unknown). 
 
2. Set of keys may change. 
 
These lead to proposals (later in this set of notes) for (online) data structures whose adaptive behavior is 
asymptotically close (analyzed in Notes 3) to that of an optimal (offline) strategy. 
 
 Online - must process each request before the next request is revealed. 
 
 Offline - given the entire sequence of requests before any processing.  (“knows the future”) 
 
What is the optimal way to organize a static tree for searching? 
 
An optimal (static) binary search tree is significantly more complicated to construct than an optimal list. 
 
1. Assume access probabilities are known: 
 
 keys are   

€ 

K1 < K2 <! < Kn  
 

 

€ 

pi = probability of request for Ki
qi = probability of request with Ki <  request < Ki+1
q0 = probability of request < K1
qn = probability of request > Kn

 

 



 19 
2. Assume that levels are numbered with root at level 0.  Minimize the expected number of 

comparisons to complete a search: 
 

€ 

p j KeyLevel j( ) +1( )
j=1

n
∑ + q jMissLevel j( )

j=0

n
∑  

 
3. Example tree: 
 

K1

K2

K3

K4

K5

1p2

2p1 2p4

3p3 3p5

2q0 2q1

3q2 3q3 3q4 3q5

0

1

2

3
 

 
 
4. Solution is by dynamic programming: 
 
 Principle of optimality - solution is not optimal unless the subtrees are optimal. 
 
 Base case - empty tree, costs nothing to search. 
 

pi+1
pj

qi

qi+1 qj-1

qj

 
 

 

  

€ 

c i, j( ) − cost of subtree with keys Ki+1,!,K j
c i, j( ) always includes exactly pi+1,!, p j  and qi,!,q j
c i,i( ) = 0 −Base case, no keys, just misses for qi (request between Ki and Ki+1)
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 Recurrence for finding optimal subtree: 
 

€ 

c i, j( ) = w i, j( ) + min
i<k≤ j

c i,k −1( ) + c k, j( )( )  

 
 tries every possible root (“k”) for the subtree with keys   

€ 

Ki+1,!,K j  
 
   

€ 

w i, j( ) = pi+1 +!+ p j + qi +!+ q j  accounts for adding another probe for all keys in subtree : 
 
 Left:   

€ 

pi+1 +!+ pk−1 + qi +!qk−1 
 
 Right:   

€ 

pk+1 +!+ p j + qk +!q j  
 
 Root: 

€ 

pk  

Kk

c(i,k-1)
c(k,j)

 
 
5. Implementation:  A k-family is all cases for 

€ 

c i,i + k( ) .  k-families are computed in ascending order 
from 1 to n.  Suppose 

€ 

n = 5: 
 
  _0 1 2 3 4_  5  
  

€ 

c 0,0( ) 

€ 

c 0,1( ) 

€ 

c 0,2( ) 

€ 

c 0,3( ) 

€ 

c 0,4( )  

€ 

c 0,5( ) 
  

€ 

c 1,1( )  

€ 

c 1,2( ) 

€ 

c 1,3( ) 

€ 

c 1,4( ) 

€ 

c 1,5( ) 
  

€ 

c 2,2( ) 

€ 

c 2,3( ) 

€ 

c 2,4( )  

€ 

c 2,5( ) 
  

€ 

c 3,3( ) 

€ 

c 3,4( )  

€ 

c 3,5( ) 
  

€ 

c 4,4( ) 

€ 

c 4,5( )  
  

€ 

c 5,5( ) 
 
 Complexity: 

€ 

O n2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  space is obvious.  

€ 

O n3⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  time from: 

 

€ 

k n +1− k( )
k=1

n
∑  

 
  where k is the number of roots for each 

€ 

c i,i + k( )  and 

€ 

n +1− k  is the number of 

€ 

c i,i + k( )  cases 
  in family k. 
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6. Traceback - besides having the minimum value for each 

€ 

c i, j( ) , it is necessary to save the subscript 
for the optimal root for 

€ 

c i, j( )  as r[i][j]. 
 This also leads to Knuth’s improvement: 
 
 Theorem:  The root for the optimal tree 

€ 

c i, j( )  must have a key with subscript no less than the key 
subscript for the root of the optimal tree for 

€ 

c i, j −1( ) and no greater than the key subscript for the 
root of optimal tree 

€ 

c i +1, j( ) .  (These roots are computed in the preceding family.) 
 
 Proof: 
 
 1. Consider adding 

€ 

p j  and 

€ 

q j  to tree for 

€ 

c i, j −1( ).  Optimal tree for 

€ 

c i, j( )  must keep the same key 
at the root or use one further to the right. 

 

Ki+1 Kj-1  
 
 2. Consider adding 

€ 

pi+1 and 

€ 

qi to tree for 

€ 

c i +1, j( ) .  Optimal tree for 

€ 

c i, j( )  must keep the same 
key at the root or use one further to the left. 

 

Ki+2 Kj  
 
7. Analysis of Knuth’s improvement. 
 
 Each 

€ 

c i, j( )  case for k-family will vary in the number of roots to try, but overall time is reduced to 

€ 

O n2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  by using a telescoping sum: 
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€ 

r i +1[ ] i + k[ ] − r i[ ] i + k −1[ ] +1( )
i=0

n−k
∑

k=2

n
∑ =

r 1[ ] k[ ] − r 0[ ] k −1[ ] +1
+

r 2[ ] 1+ k[ ] − r 1[ ] k[ ] +1
+

r 3[ ] 2 + k[ ] − r 2[ ] 1+ k[ ] +1
+!+

r n − k +1[ ] n[ ] − r n − k[ ] n −1[ ] +1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

k=2

n
∑

= r n − k +1[ ] n[ ] − r 0[ ] k −1[ ] + n − k +1( )
k=2

n
∑

≤ n − 0 + n − k +1( )
k=2

n
∑ = 2n − k +1( )

k=2

n
∑ =O n2⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 

 
 
 
 
n=7; 
q[0]=0.06; 
p[1]=0.04; 
q[1]=0.06; 
p[2]=0.06; 
q[2]=0.06; 
p[3]=0.08; 
q[3]=0.06; 
p[4]=0.02; 
q[4]=0.05; 
p[5]=0.10; 
q[5]=0.05; 
p[6]=0.12; 
q[6]=0.05; 
p[7]=0.14; 
q[7]=0.05; 
for (i=1;i<=n;i++) 
  key[i]=i; 
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w[0][0]=0.060000 
w[0][1]=0.160000 
w[0][2]=0.280000 
w[0][3]=0.420000 
w[0][4]=0.490000 
w[0][5]=0.640000 
w[0][6]=0.810000 
w[0][7]=1.000000 
w[1][1]=0.060000 
w[1][2]=0.180000 
w[1][3]=0.320000 
w[1][4]=0.390000 
w[1][5]=0.540000 
w[1][6]=0.710000 
w[1][7]=0.900000 
w[2][2]=0.060000 
w[2][3]=0.200000 
w[2][4]=0.270000 
w[2][5]=0.420000 
w[2][6]=0.590000 
w[2][7]=0.780000 
w[3][3]=0.060000 
w[3][4]=0.130000 
w[3][5]=0.280000 
w[3][6]=0.450000 
w[3][7]=0.640000 
w[4][4]=0.050000 
w[4][5]=0.200000 
w[4][6]=0.370000 
w[4][7]=0.560000 
w[5][5]=0.050000 
w[5][6]=0.220000 
w[5][7]=0.410000 
w[6][6]=0.050000 
w[6][7]=0.240000 
w[7][7]=0.050000 
Counts - root trick 44 without root 

trick 77 
Average probe length is 2.680000 
trees in parenthesized prefix 
c(0,0) cost 0.000000  
c(1,1) cost 0.000000  
c(2,2) cost 0.000000  
c(3,3) cost 0.000000  
c(4,4) cost 0.000000  
c(5,5) cost 0.000000  
c(6,6) cost 0.000000  
c(7,7) cost 0.000000  
c(0,1) cost 0.160000 1 
c(1,2) cost 0.180000 2 
c(2,3) cost 0.200000 3 
c(3,4) cost 0.130000 4 
c(4,5) cost 0.200000 5 

c(5,6) cost 0.220000 6 
c(6,7) cost 0.240000 7 
c(0,2) cost 0.440000 2(1,) 
c(1,3) cost 0.500000 3(2,) 
c(2,4) cost 0.400000 3(,4) 
c(3,5) cost 0.410000 5(4,) 
c(4,6) cost 0.570000 6(5,) 
c(5,7) cost 0.630000 7(6,) 
c(0,3) cost 0.780000 2(1,3) 
c(1,4) cost 0.700000 3(2,4) 
c(2,5) cost 0.820000 4(3,5) 
c(3,6) cost 0.800000 5(4,6) 
c(4,7) cost 1.000000 6(5,7) 
c(0,4) cost 1.050000 2(1,3(,4)) 
c(1,5) cost 1.130000 3(2,5(4,)) 
c(2,6) cost 1.210000 5(3(,4),6) 
c(3,7) cost 1.290000 6(5(4,),7) 
c(0,5) cost 1.490000 3(2(1,),5(4,)) 
c(1,6) cost 1.630000 5(3(2,4),6) 
c(2,7) cost 1.810000 5(3(,4),7(6,)) 
c(0,6) cost 2.050000 3(2(1,),5(4,6)) 
c(1,7) cost 2.230000 5(3(2,4),7(6,)) 
c(0,7) cost 2.680000 5(2(1,3(,4)),7(6,)) 

 
3: c(0,2) + c(3,7) + w[0][7] 
   0.44     1.29     1.0    = 2.73 
 
4: c(0,3) + c(4,7) + w[0][7] 
   0.78     1.0      1.0    = 2.78 
 
5: c(0,4) + c(5,7) + w[0][7] 
   1.05     0.63     1.0    = 2.68 

 
5

2

1 3

4

7

6
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CONCEPTS OF SELF-ORGANIZING LINEAR SEARCH 
 
Have list adapt to give better performance. 
 
Advantages: 
 
 Simple to code. 
 Convenient for situations with relatively small # of elements to avoid more elaborate mechanism. 
 Useful for some user interfaces. 
 
Access Distributions for Probabilistic Analysis: 
 
 Uniform - Theoretically convenient 
 80-20 (or 90-10) Rule 

 Zipf - n items, 

€ 

Pi = 1
iHn

, 

€ 

Hn = 1
kk=1

n
∑  

 
Since distribution may be unknown or changing, we are dealing with 
 
 Locality (temporary heavy accesses) 
 
    vs. 
 
 Convergence (obtaining optimal ordering) 
 
Implementation Approaches 
 
 Move-to-front (good locality) 
 
 Transpose (Slow to converge.  Alternating request anomaly.) 
 
 Count - Number of accesses is stored in each record (or use CLRS problem 5-1 to reduce bits) 
 
  Sort records in decreasing count order 
 
 Move-ahead-k:  more aggressive than transpose 
 
Probabilistic analysis may be pursued by Markov (state-transtion) approaches or simulation 
 
SPLAY TREES 
 
Self-adjusting counterpart to AVL and red-black trees 
 
Advantages - 1) no balance bits, 2) some help with locality of reference, 3) amortized complexity is 

same as AVL and red-black trees 
 
Disadvantage - worst-case for operation is O(n) 
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Algorithms are based on rotations to splay the last node processed (x) to root position. 
 
Zig-Zig: 

  

x

y

z

A B

C

D
z

y

x

DC

B

A

 
 
 

 
1. Single right rotation at z. 
 
2. Single right rotation at y. 
 
(+ symmetric case) 

Zig-Zag: 

 

x

y

z

B C

A

D

A B C D

x

y z

 
 
 
 

 
Double right rotation at z. 
 
(+ symmetric case) 
 

Zig:  Applies ONLY at the root 
 

 

x

y

BA

C

y

x

B C

A

 
 

 
 
Single right rotation at y. 
 
(+ symmetric case)

 
Insertion:  Attach new leaf and then splay to root. 
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Deletion: 
 
  1. Access node x to delete, including splay to root. 
 

   

x

A
x’

B

x

x’

A’

B

x’

A’ B

 
 
  2. Access predecessor x’ in left subtree A and splay to root of left subtree. 
 
  3. Take right subtree of x and make it the right subtree of x’. 
 


