
CSE 5311 Notes 2: Binary Search Trees

(Last updated 1/30/17 10:44 AM)

ROTATIONS

A

B

C

a b c d

Single right rotation at B
(AKA rotating edge BA)

Single left rotation at B
(AKA rotating edge BC)

B

C

c d

A

a

b

B

A

ba

C

c

d

A

B

C

D

E

F

G

A

B

C

D

E

F

G

Double right rotation at F

What two single rotations are equivalent?

 2
(BOTTOM-UP) RED-BLACK TREES

A red-black tree is a binary search tree whose height is logarithmic in the number of keys stored.

1. Every node is colored red or black. (Colors are only examined during insertion and deletion)

2. Every “leaf” (the sentinel) is colored black.

3. Both children of a red node are black.

4. Every simple path from a child of node X to a leaf has the same number of black nodes.

 This number is known as the black-height of X (bh(X)).

Example:

= red = black

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

0 0 0 0

0 0

0 0 0 0

0 0

0 0

0 0 0 0

1 1

1

1 1

1

1

1 1

1

2

2

2

2

32

3

Observations:

1. A red-black tree with n internal nodes (“keys”) has height at most 2 lg(n+1).

2. If a node X is not a leaf and its sibling is a leaf, then X must be red.

3. There may be many ways to color a binary search tree to make it a red-black tree.

4. If the root is colored red, then it may be switched to black without violating structural properties.

 3

INSERTION

1. Start with unbalanced insert of a “data leaf” (both children are the sentinel).

2. Color of new node is _________.

3. May violate structural property 3. Leads to three cases, along with symmetric versions.

 The x pointer points at a red node whose parent might also be red.

Case 1:

	
	

Case 2:

	

= red = black

A

A’

C

B

x

a b

c d
k

k

k

k

k+1

A

A’

C

B

a b

c d
k

k+1

k k

k+1

x

= red = black

A

B

D

C

x

b c

d e
k

k

k

k-1

k+1

a

D

C

d e

k

k-1

k+1

B

Ax

ba

k

k

c

 4
Case 3:

= red = black

D

C

d e

k

k-1

k+1

B

Ax

ba

k

k

c

A

B

ba

k

k

k+1

C

D

d e

k-1

k

c

Example:

= red = black

40

20 60

10 30 50 70

Insert 15

40

20 60

10 30 50 70

15x

40

20 60

10 30 50 70

15

x1

Insert 13

40

20 60

10 30 50 70

15

13

2

x

40

20 60

10 30 50 70

13

15x

3

40

20 60

13 30 50 70

1510

 5
Insert 75

1

40

20 60

13 30 50 70

1510 75x

40

20 60

13 30 50 70

1510 75

x

Insert 14

1

40

20 60

13 30 50 70

1510 75

14x

40

20 60

13 30 50 70

1510 75

14

x

1

40

20 60

13 30 50 70

1510 75

14

x Reset to black

Example:

140

40

20

10 30

100

60 120

50 110 13080

70 90

150

160

170

Insert 75

140

40

20

10 30

100

60 120

50 110 13080

70 90

150

160

170

75x

140

40

20

10 30

100

60 120

50 110 13080

70 90

150

160

170

75

x

1

 6
140

40

20

10 30

100

60 120

50 110 13080

70 90

150

160

170

75

x

1
2

140

40

20

10 30

100

60

120

50

110 130

80

70 90

150

160

170

75

x

3

40

20

10 30

100

60

50 80

70 90

75

140

150

160

170

120

110 130

Deletion

Start with one of the unbalanced deletion cases:

1. Deleted node is a “data leaf”.

a. Splice around to sentinel.

b. Color of deleted node?

 Red ⇒ Done

 Black ⇒ Set “double black” pointer at sentinel.
 Determine which of four rebalancing cases applies.

2. Deleted node is parent of one “data leaf”.

a. Splice around to “data leaf”

b. Color of deleted node?

 Red ⇒ Not possible

 Black ⇒ “data leaf” must be red. Change its color to black.

3. Node with key-to-delete is parent of two “data nodes”.

a. “Steal” key and data from successor (but not the color).

b. “Delete” successor using the appropriate one of the previous two cases.

 7
Case 1:

= red = black

A

B

Dx

b

c d e

k-2

k

k

k+1

a

A

C E

f

k-1 k-1

D

B

x

b c d

e

k-1

k

k

k+1

E

CA

f
k-1k-2

a

Case 2:

= red = 0 = black = 1

A

B

Dx

b

c d e

k-2

k

k-1

k+color(B)

a

A

C E

f

k-2 k-2

= either

A

B

D

x

b

c d e

k-2

k-1

k-1

k+color(B)

a

A

C E

f

k-2 k-2

Case 3:

= red = 0 = black = 1

A

B

Dx

b

c d e

k-2

k

k-1

k+color(B)

a

A

C E

f

k-1 k-2

= either

A

B

D

x

b c

d

e

k-2

k

k-1

k+color(B)

a

A C

E

f

k-1

k-2

 8
Case 4:

= red = 0 = black = 1

A

B

Dx

b

c d e

k-2
+color(C)

k+color(C)

k-1
+color(C)

k+color(B)+color(C)

a

A

C E

f

k-1 k-1
+color(C)

= either

A

B

D

b

e

k+color(D)+color(C)

a

A

E

f

c d

C
k-1k-2

+color(C)

k-1
+color(C)

k+color(C)

k-1
+color(C)

(At most three rotations occur while processing the deletion of one key)

Example:

40

20 60

10 30 50 70

120

100 140

90 110 130 150

80

Delete 50

40

20 60

10 30 70

120

100 140

90 110 130 150

80

x

40

20 60

10 30 70

120

100 140

90 110 130 150

80

x

2

 9

2 40

20 60

10 30 70

120

100 140

90 110 130 150

80

x

2 40

20 60

10 30 70

120

100 140

90 110 130 150

80x

If x reaches the root, then done. Only place in tree where this happens.

Delete 60

40

20

10 30

70

120

100 140

90 110 130 150

80

Delete 70

40

20

10 30

120

100 140

90 110 130 150

80

x

1

40

20

10

30

120

100 140

90 110 130 150

80

x

2

40

20

10

30

120

100 140

90 110 130 150

80

x

If x reaches a red node, then change color to black and done.

 10
Delete 10

40

20

30

120

100 140

90 110 130 150

80

x

3

40

20

30

120

100 140

90 110 130 150

80

x

4

40

30 120

100 140

90 110 130 150

80

20

Delete 40

30 120

100 140

90 110 130 150

80

20
x

2 30 120

100 140

90 110 130 150

80

20

x

1

30

120

100

140

90 110

130 150

80

20

x

2

30

120

100

140

90 110

130 150

80

20

x

Delete 120

30 100

140

90 110

130

150

80

20

x
2

30 100

140

90 110

130

150

80

20

x

3

30

100 140

90

110

130

15080

20

x 4

140110

130

150

30

100

90

80

20

Delete 100

140

130

150

30 90

80

20

4

110

x

140

15030 90

80

20

110

130

 11
AVL TREES

An AVL tree is a binary search tree whose height is logarithmic in the number of keys stored.

1. Each node stores the difference of the heights (known as the balance factor) of the right and left

subtrees rooted by the children:

heightright - heightleft

50
+1

20
+1

80
+1

10
0

40
-1

60
+1

100
+1

30
0

70
0

90
0

120
-1

110
0

2. A balance factor must be +1, 0, -1 (leans right, “balanced”, leans left).

3. An insertion is implemented by:

a. Attaching a leaf

b. Rippling changes to balance factor:

1. Right child ripple

 Parent.Bal = 0 ⇒ +1 and ripple to parent
 Parent.Bal = -1 ⇒ 0 to complete insertion
 Parent.Bal = +1 ⇒ +2 and ROTATION to complete insertion

2. Left child ripple

 Parent.Bal = 0 ⇒ -1 and ripple to parent
 Parent.Bal = +1 ⇒ 0 to complete insertion
 Parent.Bal = -1 ⇒ -2 and ROTATION to complete insertion

 12
4. Rotations

a. Single (LL) - right rotation at D

D
-2

B
-1

A
h

C
h

E
h

B
0

A
h

D
0

E
h

C
h

Rest of
Tree

Rest of
Tree

 Restores height of subtree to pre-insertion number of levels

 RR case is symmetric

 b. Double (LR)

B
+1

F
-2

D
-1

Rest of
Tree

C
h-1

G
h

A
h

E
h-1

B
0

F
+1

D
0

Rest of
Tree

G
h

A
h

E
h-1

C
h-1

Insert on either
subtree

 Restores height of subtree to pre-insertion number of levels

 RL case is symmetric

 13
Deletion -

 Still have RR, RL, LL, and LR, but two addditional (symmetric) cases arise.

 Suppose 70 is deleted from this tree. Either LL or LR may be applied.

60

30 80

7010

20 40

50

0 0

0

0

+1 -1

-1

-1

Fibonacci Trees - special case of AVL trees exhibiting two worst-case behaviors -

 1. Maximally skewed. (max height is roughly log1.618 n =1.44 lg n, expected height is lg n +.25)

 2. θ(log n) rotations for a single deletion.

0

(empty)

1

(empty)

2 3 4

5 6

7

 14
TREAPS (CLRS, p. 333)

Hybrid of BST and min-heap ideas

Gives code that is clearer than RB or AVL (but comparable to skip lists)

Expected height of tree is logarithmic (2.5 lg n)

 Keys are used as in BST

 Tree also has min-heap property based on each node having a priority:

 Randomized priority - generated when a new key is inserted

 Virtual priority - computed (when needed) using a function similar to a hash function

10
4

19
3

12
13

18
14

15
22

23
15

27
5

31
16

34
1

38
17

41
6

53
21

57
50

62
2

65
12

67
20

71
7

75
18

77
8

82
9

88
11

 Asides: the first published such hybrid were the cartesian trees of J. Vuillemin, “A Unifying Look

at Data Structures”, C. ACM 23 (4), April 1980, 229-239. A more complete explanation appears in
E.M. McCreight, “Priority Search Trees”, SIAM J. Computing 14 (2), May 1985, 257-276 and
chapter 10 of M. de Berg et.al. These are also used in the elegant implementation in M.A. Babenko
and T.A. Starikovskaya, “Computing Longest Common Substrings” in E.A. Hirsch, Computer
Science - Theory and Applications, LNCS 5010, 2008, 64-75.

Insertion

 Insert as leaf

 Generate random priority (large range to minimize duplicates)

 Single rotations to fix min-heap property

 15
Example: Insert 16 with a priority of 2

10
4

19
3

12
13

18
14

15
22

23
15

27
5

31
16

34
1

38
17

41
6

53
21

57
50

62
2

65
12

67
20

71
7

75
18

77
8

82
9

88
11

16
2

After rotations:

10
4

19
3

12
13

18
14

15
22

23
15

27
5

31
16

34
1

38
17

41
6

53
21

57
50

62
2

65
12

67
20

71
7

75
18

77
8

82
9

88
11

16
2

Deletion

 Find node and change priority to ∞

 Rotate to bring up child with lower priority. Continue until min-heap property holds.

 Remove leaf.

 16
Delete key 2:

2
1

1
2

4
3

3
4

5
5

2
∞

1
2

4
3

3
4

5
5

1
2

2
∞

4
3

3
4

5
5

1
2

4
3

2
∞

3
4

5
5

1
2

4
3

2
∞

3
4

5
5

1
2

4
3

3
4

5
5

AUGMENTING DATA STRUCTURES

Read CLRS, section 14.1 on using RB tree with ranking information for order statistics.

 Retrieving an element with a given rank

 Determine the rank of an element

Problem: Maintain summary information to support an aggregate operation on the k smallest (or largest)

keys in O(log n) time.

Example: Prefix Sum

 Given a key, determine the sum of all keys ≤ given key (prefix sum).

 Solution: Store sum of all keys in a subtree at the root of the subtree.

1 20

15 172

10 19

3 9

2 2 4 4

26 137

30 3020 81

16 16 24 45

21 21

 Key Prefix Sum
 1 1
 2 3
 3 6
 4 10
 10 20
 15 35
 16 51
 20 71
 21 92
 24 116
 26 142
 30 172

 17
 To compute prefix sum for a key:

 Initialize sum to 0

 Search for key, modifying total as search progresses:

 Search goes left - leave total alone

 Search goes right or key has been found - add present node’s key and left child’s sum to

total

 Key is 24: (15 + 20) + (20 + 16) + (24 + 21) = 116

 Key is 10: (1 + 0) + (10 + 9) = 20

 Key is 16: (15 + 20) + (16 + 0) = 51

 Variation: Determine the smallest key that has a prefix sum ≥ a specified value.

Updates to tree:

 Non-structural (attach/remove node) - modify node and every ancestor

 Single rotation (for prefix sum)

D ΣD

B ΣB E ΣE

A ΣA C ΣC

B ΣD

A ΣA D ΣC+ΣE+D

C ΣC E ΣE

 (Similar for double rotation)

General case - see CLRS 14.2, especially “Theorem” 14.1

Interval trees (CLRS 14.3) - a more significant application

 Set of (closed) intervals [low, high] - low is the key, but duplicates are allowed

 Each subtree root contains the max value appearing in any interval in that subtree

 Aggregate operation to support - find any interval that overlaps a given interval [low’, high’]

 Modify BST search . . .

 18
 if ptr == nil
 no interval in tree overlaps [low’, high’]

 if high’ ≥ ptr->low and ptr->high ≥ low’
 return ptr as an answer

 if ptr->left != nil and ptr->left->max ≥ low’
 ptr := ptr->left
 else
 ptr := ptr->right

 Updates to tree - similar to prefix sum, but replace additions with maximums

OPTIMAL BINARY SEARCH TREES

What is the optimal way to organize a static list for searching?

1. By decreasing access probability - optimal static/fixed ordering.

2. Key order - if misses will be “frequent”, to avoid searching entire list.

Other Considerations:

1. Access probabilities may change (or may be unknown).

2. Set of keys may change.

These lead to proposals (later in this set of notes) for (online) data structures whose adaptive behavior is
asymptotically close (analyzed in Notes 3) to that of an optimal (offline) strategy.

 Online - must process each request before the next request is revealed.

 Offline - given the entire sequence of requests before any processing. (“knows the future”)

What is the optimal way to organize a static tree for searching?

An optimal (static) binary search tree is significantly more complicated to construct than an optimal list.

1. Assume access probabilities are known:

 keys are

€

K1 < K2 <! < Kn

€

pi = probability of request for Ki
qi = probability of request with Ki < request < Ki+1
q0 = probability of request < K1
qn = probability of request > Kn

 19
2. Assume that levels are numbered with root at level 0. Minimize the expected number of

comparisons to complete a search:

€

p j KeyLevel j() +1()
j=1

n
∑ + q jMissLevel j()

j=0

n
∑

3. Example tree:

K1

K2

K3

K4

K5

1p2

2p1 2p4

3p3 3p5

2q0 2q1

3q2 3q3 3q4 3q5

0

1

2

3

4. Solution is by dynamic programming:

 Principle of optimality - solution is not optimal unless the subtrees are optimal.

 Base case - empty tree, costs nothing to search.

pi+1
pj

qi

qi+1 qj-1

qj

€

c i, j() − cost of subtree with keys Ki+1,!,K j
c i, j() always includes exactly pi+1,!, p j and qi,!,q j
c i,i() = 0 −Base case, no keys, just misses for qi (request between Ki and Ki+1)

 20
 Recurrence for finding optimal subtree:

€

c i, j() = w i, j() + min
i<k≤ j

c i,k −1() + c k, j()()

 tries every possible root (“k”) for the subtree with keys

€

Ki+1,!,K j

€

w i, j() = pi+1 +!+ p j + qi +!+ q j accounts for adding another probe for all keys in subtree :

 Left:

€

pi+1 +!+ pk−1 + qi +!qk−1

 Right:

€

pk+1 +!+ p j + qk +!q j

 Root:

€

pk

Kk

c(i,k-1)
c(k,j)

5. Implementation: A k-family is all cases for

€

c i,i + k() . k-families are computed in ascending order
from 1 to n. Suppose

€

n = 5:

 0 1 2 3 4 5

€

c 0,0()

€

c 0,1()

€

c 0,2()

€

c 0,3()

€

c 0,4()

€

c 0,5()

€

c 1,1()

€

c 1,2()

€

c 1,3()

€

c 1,4()

€

c 1,5()

€

c 2,2()

€

c 2,3()

€

c 2,4()

€

c 2,5()

€

c 3,3()

€

c 3,4()

€

c 3,5()

€

c 4,4()

€

c 4,5()

€

c 5,5()

 Complexity:

€

O n2⎛
⎝
⎜ ⎞

⎠
⎟ space is obvious.

€

O n3⎛
⎝
⎜ ⎞

⎠
⎟ time from:

€

k n +1− k()
k=1

n
∑

 where k is the number of roots for each

€

c i,i + k() and

€

n +1− k is the number of

€

c i,i + k() cases
 in family k.

 21
6. Traceback - besides having the minimum value for each

€

c i, j() , it is necessary to save the subscript
for the optimal root for

€

c i, j() as r[i][j].
 This also leads to Knuth’s improvement:

 Theorem: The root for the optimal tree

€

c i, j() must have a key with subscript no less than the key
subscript for the root of the optimal tree for

€

c i, j −1() and no greater than the key subscript for the
root of optimal tree

€

c i +1, j() . (These roots are computed in the preceding family.)

 Proof:

 1. Consider adding

€

p j and

€

q j to tree for

€

c i, j −1(). Optimal tree for

€

c i, j() must keep the same key
at the root or use one further to the right.

Ki+1 Kj-1

 2. Consider adding

€

pi+1 and

€

qi to tree for

€

c i +1, j() . Optimal tree for

€

c i, j() must keep the same
key at the root or use one further to the left.

Ki+2 Kj

7. Analysis of Knuth’s improvement.

 Each

€

c i, j() case for k-family will vary in the number of roots to try, but overall time is reduced to

€

O n2⎛
⎝
⎜ ⎞

⎠
⎟ by using a telescoping sum:

 22

€

r i +1[] i + k[] − r i[] i + k −1[] +1()
i=0

n−k
∑

k=2

n
∑ =

r 1[] k[] − r 0[] k −1[] +1
+

r 2[] 1+ k[] − r 1[] k[] +1
+

r 3[] 2 + k[] − r 2[] 1+ k[] +1
+!+

r n − k +1[] n[] − r n − k[] n −1[] +1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

k=2

n
∑

= r n − k +1[] n[] − r 0[] k −1[] + n − k +1()
k=2

n
∑

≤ n − 0 + n − k +1()
k=2

n
∑ = 2n − k +1()

k=2

n
∑ =O n2⎛

⎝
⎜ ⎞

⎠
⎟

n=7;
q[0]=0.06;
p[1]=0.04;
q[1]=0.06;
p[2]=0.06;
q[2]=0.06;
p[3]=0.08;
q[3]=0.06;
p[4]=0.02;
q[4]=0.05;
p[5]=0.10;
q[5]=0.05;
p[6]=0.12;
q[6]=0.05;
p[7]=0.14;
q[7]=0.05;
for (i=1;i<=n;i++)
 key[i]=i;

 23

w[0][0]=0.060000
w[0][1]=0.160000
w[0][2]=0.280000
w[0][3]=0.420000
w[0][4]=0.490000
w[0][5]=0.640000
w[0][6]=0.810000
w[0][7]=1.000000
w[1][1]=0.060000
w[1][2]=0.180000
w[1][3]=0.320000
w[1][4]=0.390000
w[1][5]=0.540000
w[1][6]=0.710000
w[1][7]=0.900000
w[2][2]=0.060000
w[2][3]=0.200000
w[2][4]=0.270000
w[2][5]=0.420000
w[2][6]=0.590000
w[2][7]=0.780000
w[3][3]=0.060000
w[3][4]=0.130000
w[3][5]=0.280000
w[3][6]=0.450000
w[3][7]=0.640000
w[4][4]=0.050000
w[4][5]=0.200000
w[4][6]=0.370000
w[4][7]=0.560000
w[5][5]=0.050000
w[5][6]=0.220000
w[5][7]=0.410000
w[6][6]=0.050000
w[6][7]=0.240000
w[7][7]=0.050000
Counts - root trick 44 without root

trick 77
Average probe length is 2.680000
trees in parenthesized prefix
c(0,0) cost 0.000000
c(1,1) cost 0.000000
c(2,2) cost 0.000000
c(3,3) cost 0.000000
c(4,4) cost 0.000000
c(5,5) cost 0.000000
c(6,6) cost 0.000000
c(7,7) cost 0.000000
c(0,1) cost 0.160000 1
c(1,2) cost 0.180000 2
c(2,3) cost 0.200000 3
c(3,4) cost 0.130000 4
c(4,5) cost 0.200000 5

c(5,6) cost 0.220000 6
c(6,7) cost 0.240000 7
c(0,2) cost 0.440000 2(1,)
c(1,3) cost 0.500000 3(2,)
c(2,4) cost 0.400000 3(,4)
c(3,5) cost 0.410000 5(4,)
c(4,6) cost 0.570000 6(5,)
c(5,7) cost 0.630000 7(6,)
c(0,3) cost 0.780000 2(1,3)
c(1,4) cost 0.700000 3(2,4)
c(2,5) cost 0.820000 4(3,5)
c(3,6) cost 0.800000 5(4,6)
c(4,7) cost 1.000000 6(5,7)
c(0,4) cost 1.050000 2(1,3(,4))
c(1,5) cost 1.130000 3(2,5(4,))
c(2,6) cost 1.210000 5(3(,4),6)
c(3,7) cost 1.290000 6(5(4,),7)
c(0,5) cost 1.490000 3(2(1,),5(4,))
c(1,6) cost 1.630000 5(3(2,4),6)
c(2,7) cost 1.810000 5(3(,4),7(6,))
c(0,6) cost 2.050000 3(2(1,),5(4,6))
c(1,7) cost 2.230000 5(3(2,4),7(6,))
c(0,7) cost 2.680000 5(2(1,3(,4)),7(6,))

3: c(0,2) + c(3,7) + w[0][7]
 0.44 1.29 1.0 = 2.73

4: c(0,3) + c(4,7) + w[0][7]
 0.78 1.0 1.0 = 2.78

5: c(0,4) + c(5,7) + w[0][7]
 1.05 0.63 1.0 = 2.68

5

2

1 3

4

7

6

 24
CONCEPTS OF SELF-ORGANIZING LINEAR SEARCH

Have list adapt to give better performance.

Advantages:

 Simple to code.
 Convenient for situations with relatively small # of elements to avoid more elaborate mechanism.
 Useful for some user interfaces.

Access Distributions for Probabilistic Analysis:

 Uniform - Theoretically convenient
 80-20 (or 90-10) Rule

 Zipf - n items,

€

Pi = 1
iHn

,

€

Hn = 1
kk=1

n
∑

Since distribution may be unknown or changing, we are dealing with

 Locality (temporary heavy accesses)

 vs.

 Convergence (obtaining optimal ordering)

Implementation Approaches

 Move-to-front (good locality)

 Transpose (Slow to converge. Alternating request anomaly.)

 Count - Number of accesses is stored in each record (or use CLRS problem 5-1 to reduce bits)

 Sort records in decreasing count order

 Move-ahead-k: more aggressive than transpose

Probabilistic analysis may be pursued by Markov (state-transtion) approaches or simulation

SPLAY TREES

Self-adjusting counterpart to AVL and red-black trees

Advantages - 1) no balance bits, 2) some help with locality of reference, 3) amortized complexity is

same as AVL and red-black trees

Disadvantage - worst-case for operation is O(n)

 25
Algorithms are based on rotations to splay the last node processed (x) to root position.

Zig-Zig:

x

y

z

A B

C

D
z

y

x

DC

B

A

1. Single right rotation at z.

2. Single right rotation at y.

(+ symmetric case)

Zig-Zag:

x

y

z

B C

A

D

A B C D

x

y z

Double right rotation at z.

(+ symmetric case)

Zig: Applies ONLY at the root

x

y

BA

C

y

x

B C

A

Single right rotation at y.

(+ symmetric case)

Insertion: Attach new leaf and then splay to root.

 26
Deletion:

 1. Access node x to delete, including splay to root.

x

A
x’

B

x

x’

A’

B

x’

A’ B

 2. Access predecessor x’ in left subtree A and splay to root of left subtree.

 3. Take right subtree of x and make it the right subtree of x’.

