
CSE 5311 Notes 4a: Priority Queues

(Last updated 1/12/21 10:56 AM)

Chart on p. 506, CLRS (binary, Fibonacci heaps)

MAKE-HEAP

INSERT

MINIMUM

EXTRACT-MIN

UNION (MELD/MERGE)

DECREASE-KEY

DELETE

Applications - sorting (?), scheduling, greedy algorithms, discrete event simulation

Ordered lists - Suitable if n is extremely small (some simulations)

Binary trees - O(log n) operations, but larger constant than binary heaps. O(n) for UNION.

Binary heap (review)

 Conceptual structure

 Ordering criteria

 Mapping to table

 O(log n) operations, except UNION

d-heap

 Generalizes binary heap with fan-out of d to get shallower structure.

 Similar details as binary heap for mapping to an array.

 Useful when many DECREASE-KEYs occur (example: Prim’s MST, - use d = |E| /|V|)

16

€

Θ E logV()

 2
(Aside) General issue - single-valued nodes vs. nodes containing table (“sack”) with O(log n) values

 Table is in ascending priority order.

 Most operations operate locally on one table.

 If the first table element changes (minheap), then traditional heap processing occurs.

 Tree structure must be linked, i.e. mapping nodes to table is too slow.

Moret, B.M.E., and Shapiro, H.D., “An empirical assessment of algorithms for constructing a
minimal spanning tree”, in Computational Support for Discrete Mathematics, N. Dean and G.
Shannon, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science 15
(1994), 99–117.

LEFTIST HEAPS

Binary tree, heap ordered

Each node has a null path length

 Either subtree empty Þ NPL = 0

 Otherwise NPL = 1 + min(left®NPL, right®NPL) (Empty tree/sentinel - view NPL as -1)

Leftist property: left®NPL ³ right®NPL at all nodes.

 Leftmost path length is O(n).

 Rightmost path length is O(log n).

 Leftist tree with r nodes on right path must have at least 2r - 1 nodes.

 (e.g. NPL is height of maximum embedded complete binary tree)

 Operations take O(log n) by avoiding left paths and emphasizing right paths.

 Occasionally, left and right subtrees must be swapped.

Could be
part empty

 3
Example: EXTRACT-MIN

 Root has item to return.

 Recursively, merge right paths of two remaining subheaps (top-down) keeping same left
 children.

 Swap subtrees, bottom-up, if necessary to restore leftist property.

1

6 3

12 7 10 8

18 24

33

37 18 21 14

23

17

26

0

0

0 0 0 0

0

0

0

0

01 1 1

12

2

3

6

7

8

18

10

21 14

23

0

0

0

1

12

18 24

33

0

0

0

1

37
0

17

26
0

0

1

1

2

2

0

3
2

10

21 14

23

0

0

0

1
6

7

8

18

12

18 24

33

0

0

0

1

17

26
0

0

1

1

2

37
0

0

 4
UNION takes O(log n) time, so use to implement other operations.

BUT, DECREASE-KEY may involve a node W(n) away from root, so swapping through ancestors is too
slow.

1. Find node X via another data structure.

2. Cut X’s subtree away from parent.

3. Update NPL on former ancestors of X, swapping subtrees to restore leftist property.

 Decrease in NPL continues to propagate only when ancestor NPL decreases.

(Implies O(log n)) Ancestors in diagram below are marked with before/after NPLs
for cutting away the leftmost leaf.

4. UNION X’s subtree and modified original tree.

BINOMIAL HEAPS (See CLRS problem 19-2)

Mergeable Heap - in O(log n) time

Based on Binomial Tree (with heap ordering) - |Br| = 2r

5

4

3

2

1/0

3/2

4/3

5/4

6/5

7

15

31

63

2/1

1

X

B0 = Br =

Br-1

Br-1
B1 = B2 = B3 =

 5

Binomial Heap = Forest of Binomial Trees

 Each node includes priority, leftmost child, right sibling, parent, and degree.

 Tree roots are in a singly-linked list ordered by ascending degrees.

 Children are in a singly-linked list ordered by descending degrees (could also use ascending).

 (“Sack” idea can be used to reduce overhead from pointers)

Can’t have two Bi trees for any i Þ Use binary representation of n.

Representation is useful for combining 2 Bi trees:

UNION of two binomial heaps

B4 =

B2 = B2 = B3 =

4

5 8

8

11

12 18

13

4

11 5 8

12 18 8

13

3 2 1 0 3 2 1 0

4

5 8

8

12

13

7 11

18

14

 6
Based on binary addition:

 0111 + 0011 =1010

Link B0 trees:

Link B1 trees:

Link B2 trees:

3 2 1 0 3 2 1 0

4

5 8

8

12

13

11

18

3 2 1 0

7

14

3 2 1 0 3 2 1 0

4

5 8

8

12

13

11

18

3 2 1 0

7

14

3 2 1 0 3 2 1 0

4

5 8

812

13

11

18

3 2 1 0

7

14

 7

Save B3 tree

Insertion into binomial heap?

Implementing EXTRACT-MIN

1. Scan tree roots for minimum key.

2. Decompose root of tree with minimum:

3. Treat fragments as binomial heap and UNION with remainder of original heap.

Example: Returns item 4 and decomposes the B3 tree

3 2 1 0 3 2 1 0

4

5 8

812

13

11

18

3 2 1 0

7

14

Br =

. . .Br-1 Br-2 B0

4

5 8

812

13

11

18

3 2 1 0

7

14

 8

Implementing DECREASE-KEY

 Simply do exchanges through ancestor chain until min-heap property has been restored.

 Suppose 13 is decreased to 6 in the previous example.

3 2 1 0 3 2 1 0

7

14

5 8

812

13

11

18

3 2 1 0 3 2 1 0

7

14

5 8

812

13

11

18

3 2 1 0

3 2 1 0 3 2 1 0

7

14

5 8

812

13

11

18

3 2 1 0

3 2 1 0 3 2 1 0

7

14

5 8

8

12

13

11

18

3 2 1 0

 9
Implementing DELETE

1. Auxiliary data structure (see CSE 2320 Notes 5.D regarding dictionary) is used to find the
node to delete.

2. Use DECREASE-KEY to change priority to -¥.

3. Use EXTRACT-MIN to eliminate -¥.

Example: Delete 11.

Increase a key? What happens if obvious method is applied for key at root?

7

14

5 8

8

11

12

6

18

3 2 1 0

7

14

8

8

6

12

5

18

3 2 1 0

-∞

6

12

18

8

8

7

14

3 2 1 0

5

B4 =

 10
Binomial Heaps vs. Fibonacci Heaps

O(log n) actual costs O(1) amortized, except EXTRACT-MIN
 and DELETE (O(log n) amortized)

 DECREASE-KEY is “faster”

Strict structural properties Flexible structural properties
 (Allows laziness)

Analysis is straightforward Amortized analysis involves subtle
 arguments regarding constants
 for asymptotic notation (especially for
 EXTRACT-MIN and cascading cut)

PAIRING HEAPS

Practical alternative to Fibonacci heaps.

Amortized costs are slightly higher than Fibonacci heaps.

Structure is based on mapping multi-way tree to binary tree (left child, right sibling representation) that
includes parent pointers.

UNIONs are used heavily, but the structure is more flexible than a binomial heap.

4

10 6 9 14

7 12 18 2425

8 20 15

30

4

10

6

97

8 12 25 14

18

24

20

30 15

 11
UNION:

As usual, INSERT is just a UNION.

MINIMUM just requires returning the priority in the root.

EXTRACT-MIN is processed by:

1. Remove root node. Stored priority will be returned.

2. Process rightmost path of the remaining tree using UNION on pairs going left-to-right. (If

number of nodes is odd, then rightmost node is treated as a result.)

3. Process the k results from (2.) in right-to-left order using k-1 UNIONs with a result tree, i.e.

result := tree[k];
for (i=k-1; i>0; i--)

result := UNION (result, tree[i])

1

2 3 4

5

6 7 8

1

2 3 45

6 7 8

1

2

3

4

5

6

7

8

1

5

6

7

8

2

3

4

 12
EXTRACT-MIN example

After steps (1.) and (2.):

Successive result trees:

1

810 52463

1

3

6

4

2

10

8

5

3

6

2

4 10

8 5

10

8

5 2

4

10

8

5

2

4

10

8

53

6

 13
DECREASE-KEY will cut away tree (if necessary due to loss of heap ordering) and then UNION.

Example: Decrease 20 to 5

DELETE:

if item is at root, use EXTRACT-MIN
else

cut edge to parent
perform EXTRACT-MIN on tree of item
UNION resulting tree with tree that was cut from

Example: Delete 7

4

10 6 9 14

7 12 18 2425

8 20 15

30 24

4

10 6 9 14

7 12 18 2425

8

5

15

30

4

10 6 9 14

7 12 18 2425

8 20 15

30

4

10 6 9 14

12 1825

8 20 15

30

24

4

10 6 9 14

12 1825

8

15 20

30

24

4

10 6 9 14

12 1825

8

15 20

30

24

