
CSE 5311 Notes 4a:  Priority Queues 
 

(Last updated 1/12/21 10:56 AM) 
 
Chart on p. 506, CLRS (binary, Fibonacci heaps) 
 

MAKE-HEAP 
 
INSERT 
 
MINIMUM 
 
EXTRACT-MIN 
 
UNION (MELD/MERGE) 
 
DECREASE-KEY 
 
DELETE 

 
Applications - sorting (?), scheduling, greedy algorithms, discrete event simulation 
 
Ordered lists - Suitable if n is extremely small (some simulations) 
 
Binary trees - O(log n) operations, but larger constant than binary heaps.  O(n) for UNION. 
 
Binary heap (review) 
 
 Conceptual structure 
 
 Ordering criteria 
 
 Mapping to table 
 
 O(log n) operations, except UNION 
 
 

 
d-heap 
 
 Generalizes binary heap with fan-out of d to get shallower structure. 
 
 Similar details as binary heap for mapping to an array. 
 
 Useful when many DECREASE-KEYs occur (example: Prim’s MST,  - use d = |E| /|V|) 
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 2 
(Aside) General issue - single-valued nodes vs. nodes containing table (“sack”) with O(log n) values 
 
 Table is in ascending priority order. 
 
 Most operations operate locally on one table. 
 
 If the first table element changes (minheap), then traditional heap processing occurs. 
 
 Tree structure must be linked, i.e. mapping nodes to table is too slow. 
 

 
 

Moret, B.M.E., and Shapiro, H.D., “An empirical assessment of algorithms for constructing a 
minimal spanning tree”, in Computational Support for Discrete Mathematics, N. Dean and G. 
Shannon, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science 15 
(1994), 99–117. 

 
LEFTIST HEAPS 
 
Binary tree, heap ordered 
 
Each node has a null path length 
 
 Either subtree empty Þ NPL = 0 
 
 Otherwise NPL = 1 + min(left®NPL, right®NPL) (Empty tree/sentinel - view NPL as -1) 
 
Leftist property:  left®NPL ³ right®NPL at all nodes. 
 
 Leftmost path length is O(n). 
 
 Rightmost path length is O(log n). 
 

  Leftist tree with r nodes on right path must have at least 2r - 1 nodes. 
 
  (e.g. NPL is height of maximum embedded complete binary tree) 
 
 Operations take O(log n) by avoiding left paths and emphasizing right paths. 
 
 Occasionally, left and right subtrees must be swapped. 

Could be
part empty
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Example:  EXTRACT-MIN 

 
 
 Root has item to return. 
 
 Recursively, merge right paths of two remaining subheaps (top-down) keeping same left  
 children. 
 

 
 
 Swap subtrees, bottom-up, if necessary to restore leftist property. 

 

 

1

6 3

12 7 10 8

18 24

33

37 18 21 14

23

17

26

0

0

0 0 0 0

0

0

0

0

01 1 1

12

2

3

6

7

8

18

10

21 14

23

0

0

0

1

12

18 24

33

0

0

0

1

37
0

17

26
0

0

1

1

2

2

0

3
2

10

21 14

23

0

0

0

1
6

7

8

18

12

18 24

33

0

0

0

1

17

26
0

0

1

1

2

37
0

0



 4 
UNION takes O(log n) time, so use to implement other operations. 
 
BUT, DECREASE-KEY may involve a node W(n) away from root, so swapping through ancestors is too 
slow. 
 

1. Find node X via another data structure. 
 
2. Cut X’s subtree away from parent. 
 
3. Update NPL on former ancestors of X, swapping subtrees to restore leftist property. 
 
 Decrease in NPL continues to propagate only when ancestor NPL decreases. 

(Implies O(log n))  Ancestors in diagram below are marked with before/after NPLs 
for cutting away the leftmost leaf. 

 

 
 
4. UNION X’s subtree and modified original tree. 

 
 
BINOMIAL HEAPS (See CLRS problem 19-2) 
 
Mergeable Heap - in O(log n) time 
 

Based on Binomial Tree (with heap ordering) - |Br| = 2r 
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Binomial Heap = Forest of Binomial Trees 
 
 Each node includes priority, leftmost child, right sibling, parent, and degree. 
 
 Tree roots are in a singly-linked list ordered by ascending degrees. 
 
 Children are in a singly-linked list ordered by descending degrees (could also use ascending). 
 
 (“Sack” idea can be used to reduce overhead from pointers) 
 
Can’t have two Bi trees for any i Þ Use binary representation of n. 
 
Representation is useful for combining 2 Bi trees: 
 

 
 
UNION of two binomial heaps 
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Based on binary addition: 
 
 0111 + 0011 =1010 
 
Link B0 trees: 
 

  
 
Link B1 trees: 
 

  
 
Link B2 trees: 
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Save B3 tree 
 

  
 
Insertion into binomial heap? 
 
 
 
 
Implementing EXTRACT-MIN 
 

1. Scan tree roots for minimum key. 
 
2. Decompose root of tree with minimum: 
 

  
 
3. Treat fragments as binomial heap and UNION with remainder of original heap. 

 
Example:  Returns item 4 and decomposes the B3 tree 
 

  
 

3 2 1 0 3 2 1 0

4

5 8

812

13

11

18

3 2 1 0

7

14

Br =

. . .Br-1 Br-2 B0 

4

5 8

812

13

11

18

3 2 1 0

7

14



 8 

  
 

  
 

  
 

  
 
Implementing DECREASE-KEY 
 
 Simply do exchanges through ancestor chain until min-heap property has been restored. 
 
 Suppose 13 is decreased to 6 in the previous example. 
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Implementing DELETE 
 

1. Auxiliary data structure (see CSE 2320 Notes 5.D regarding dictionary) is used to find the 
node to delete. 

 
2. Use DECREASE-KEY to change priority to -¥. 
 
3. Use EXTRACT-MIN to eliminate -¥. 
 

Example:  Delete 11. 
 

  
 
 
Increase a key?  What happens if obvious method is applied for key at root? 
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Binomial Heaps  vs.  Fibonacci Heaps 
 
O(log n) actual costs  O(1) amortized, except EXTRACT-MIN 
  and DELETE (O(log n) amortized) 
 
  DECREASE-KEY is “faster” 
 
Strict structural properties  Flexible structural properties 
  (Allows laziness) 
 
Analysis is straightforward  Amortized analysis involves subtle 
  arguments regarding constants 
  for asymptotic notation (especially for 
  EXTRACT-MIN and cascading cut) 

 
 
PAIRING HEAPS 
 
Practical alternative to Fibonacci heaps. 
 
Amortized costs are slightly higher than Fibonacci heaps. 
 
Structure is based on mapping multi-way tree to binary tree (left child, right sibling representation) that 
includes parent pointers. 
 

  
 
 
UNIONs are used heavily, but the structure is more flexible than a binomial heap. 
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UNION: 
 

 
 
 

 
 
 
As usual, INSERT is just a UNION. 
 
MINIMUM just requires returning the priority in the root. 
 
EXTRACT-MIN  is processed by: 
 

1. Remove root node.  Stored priority will be returned. 
 
2. Process rightmost path of the remaining tree using UNION on pairs going left-to-right.  (If 

number of nodes is odd, then rightmost node is treated as a result.) 
 
3. Process the k results from (2.) in right-to-left order using k-1 UNIONs with a result tree, i.e. 
 

result := tree[k]; 
for (i=k-1; i>0; i--) 

result := UNION (result, tree[i]) 
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EXTRACT-MIN example 

  
 
 
After steps (1.) and (2.): 
 

 
 
 
Successive result trees: 
 

 

1

810 52463

1

3

6

4

2

10

8

5

3

6

2

4 10

8 5

10

8

5 2

4

10

8

5

2

4

10

8

53

6



 13 
DECREASE-KEY will cut away tree (if necessary due to loss of heap ordering) and then UNION. 
 
Example:  Decrease 20 to 5 
 

  
 
 
DELETE: 
 

if item is at root, use EXTRACT-MIN 
else 

cut edge to parent 
perform EXTRACT-MIN on tree of item 
UNION resulting tree with tree that was cut from 

 
Example:  Delete 7 
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