PAGE
6

CSE 5311 Notes 5: Hashing

(Last updated 3/4/20 9:10 AM)

CLRS, Chapter 11

Review:
11.2: Chaining - related to perfect hashing method

11.3: Hash functions, skim universal hashing

(aside: https://dl-acm-org.ezproxy.uta.edu/citation.cfm?doid=3116227.3068772)

11.4: Open addressing

Collision Handling by Open Addressing

Saves space when records are small and chaining would waste a large fraction of space for links.

Collisions are handled by using a probe sequence for each key – a permutation of the table’s subscripts.

Hash function is h(key, i) where i is the number of reprobe attempts tried.

Two special key values (or flags) are used: never-used (-1) and recycled (-2). Searches stop on never-used, but continue on recycled.

Linear Probing - h(key, i) = (key + i) % m

Properties:

1.
Probe sequences eventually hit all slots.

2.
Probe sequences wrap back to beginning of table.

3.
Exhibits lots of primary clustering (the end of a probe sequence coincides with another

probe sequence):

i0 i1 i2 i3 i4 . . .
ij ij+1 . . .

ij ij+1 ij+2 . . .

4.
There are only m probe sequences.

5.
Exhibits lots of secondary clustering: if two keys have the same initial probe, then their probe sequences are the same.

What about using h(key, i) = (key + 2*i) % 101 or h(key, i) = (key + 50*i) % 1000?

Suppose all keys are equally likely to be accessed. Is there a best order for inserting keys?

[image: image1.emf]

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Insert keys: 101, 171, 102, 103, 104, 105, 106

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Insert keys: 101, 171, 102, 103, 104, 105, 106

Double Hashing – h(key, i) = (h1(key) + i*h2(key)) % m

Properties:

1.
Probe sequences will hit all slots only if m is prime.

2.
m*(m – 1) probe sequences.

3.
Eliminates most clustering.

Hash Functions:

h1 = key % m
h2 = 1 + key % (m – 1)

Load Factor
[image: image2.emf]

=α =
elements stored

slots in table

=a=

elements stored

slots in table

Upper Bounds on Expected Performance for Open Addressing

Double hashing comes very close to these results, but analysis assumes that hash function provides

all m! permutations of subscripts.

1.
Unsuccessful search with load factor of
[image: image3.emf]

€

α =
n
m

a=

n

m

. Each successive probe has the effect of decreasing table size and number of slots in use by one.

[image: image4.emf]

m slots

Before
first

probe

n
slots

m-1 slots

After
first

probe

n-1
slots

x

m-2 slots

After
second
probe

n-2
slots

x

m-3 slots

After
third
probe

n-3
slots

x

x x

x

m-4 slots

After
fourth
probe

n-4
slots

x

x

x

x

a.
Probability that all searches have a first probe

1

b.
Probability that search goes on to a second probe

[image: image5.emf]

€

α =
n
m

a=

n

m

c.
Probability that search goes on to a third probe

[image: image6.emf]

€

α
n −1
m −1

<α
n
m

<α2

a

n

-

1

m

-

1

<a

n

m

<a

2

d.
Probability that search goes on to a fourth probe

[image: image7.emf]

€

α
n −1
m −1

n − 2
m − 2

<α2 n − 2
m − 2

<α3

a

n

-

1

m

-

1

n

-

2

m

-

2

<a

2

n

-

2

m

-

2

<a

3

. . .

Suppose the table is large. Sum the probabilities for probes to get upper bound on expected number of probes:

[image: image8.emf]

€

αi

i=0

∞
∑ =

1
1−α

a

i

i

=

0

¥

å =

1

1

-a

 (much worse than chaining)

2.
Inserting a key with load factor 

a.
Exactly like unsuccessful search

b.

[image: image9.emf]

€

1
1−α

1

1

-a

 probes

3.
Successful search

a.
Searching for a key takes as many probes as inserting that particular key.

b.
Each inserted key increases the load factor, so the inserted key number i + 1 is expected

to take no more than

[image: image10.emf]

€

1

1− i
m

=
m
m − i

1

1

-

i

m

=

m

m

-

i

 probes

c.
Find expected probes for n consecutively inserted keys (each key is equally likely to be requested):

[image: image11.emf]

1
n

m
m− ii=0

n−1
∑ =

m
n

1
m− ii=0

n−1
∑ Sum is 1

m
+

1
m−1

+...+ 1
m− n+1

 = m
n

1
ii=m−n+1

m
∑

 ≤ m
n

1
xm−n

m
∫ dx Upper bound on sum for decreasing function. CLRS, p. 1154 (A.12)

 = m
n

lnm− ln m− n()() = 1
α

ln m
m− n

=
1
α

ln 1
1−α

= −
1
α

ln 1−α()

1

n

m

m

-

i

i

=

0

n

-

1

å

=

m

n

1

m

-

i

i

=

0

n

-

1

å

 Sum is

1

m

+

1

m

-

1

+

...

+

1

m

-

n

+

1

=

m

n

1

i

i

=

m

-

n

+

1

m

å

£

m

n

1

x

m

-

n

m

ò

dx

 Upper bound on sum for decreasing function. CLRS, p. 1154 (A.12)

=

m

n

ln

m

-

ln

m

-

n

()

()

=

1

a

ln

m

m

-

n

=

1

a

ln

1

1

-a

=-

1

a

ln1

-a

()

Brent’s Rehash - On-the-fly reorganization of a double hash table (not in book)

http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=361952.361964
During insertion, moves no more than one other key to avoid expected penalty on recently inserted keys.

Diagram shows how i+1, the increase in the total number of probes to search for each key once, is minimized.

Expected probes for successful search ≤ 2.5. (Assuming uniform access probabilities.)

keyNew uses (j+1)-prefix of its probe sequence to reach slot with keyOld

keyOld is moved i-j additional positions down its probe sequence (a key may be moved

by several insertions)

Insertion is more expensive, but typically needs only three searches per key to break even.

Unsuccessful search performance is the same as conventional double hashing.

[image: image12.emf]

h1(keyNew)

keyOld

j probes

i-j probes

-1

(h1(keyNew)+j*h2(keyNew))%m jj

(jj+(i-j)*h2(keyOld))%m

i j i-j
0 0 0
1 1 0
 0 1
2 2 0
 1 1
 0 2
3 3 0
 2 1
 1 2
 0 3
4 4 0
 3 1
 2 2
 1 3
 0 4
 .
 .
 .

ii

h1(keyNew)

keyOld

j probes

i-j probes

-1

(h1(keyNew)+j*h2(keyNew))%m jj

(jj+(i-j)*h2(keyOld))%m

i j i-j

0 0 0

1 1 0

 0 1

2 2 0

 1 1

 0 2

3 3 0

 2 1

 1 2

 0 3

4 4 0

 3 1

 2 2

 1 3

 0 4

 .

 .

 .

ii

(Conceptual) Test Problem: The hash table below was created using double hashing with Brent’s rehash. The initial slot (
[image: image13.emf]

€

h1 key()

h

1

key

()

) and rehashing increment (
[image: image14.emf]

€

h2 key()

h

2

key

()

) are given for each key. Show the result from inserting 9000 using Brent’s rehash when
[image: image15.emf]

€

h1(9000) = 5

h

1

(9000)

=

5

 and
[image: image16.emf]

€

h2(9000) = 4

h

2

(9000)

=

4

. (10 points)

key

[image: image17.emf]

€

h1 key()

h

1

key

()

[image: image18.emf]

€

h2 key()

h

2

key

()

Probe Sequences (stopping at empty slot)

(part of finding solution)

1 2 3 4 5 (probes for keyNew)

0

2 5 1 1 0 (probes for keyOld)

3 7 4 5 5 (total additional probes)

1

9000
5 2 6 3 0

2
5000
2
1
2 3 4 5 6 0

3
4000
3
4
3 0

4
3000
4
1
4 5 6 0

5
2000
5
5
5 3 1

6
1000
6
2
6 1

An implementation for significant n will apply the concept incrementally by increasing i and expanding the set of old keys under consideration.
void insert (int keyNew, int r[])

{

int i, ii, inc, init, j, jj, keyOld;

init = hashfunction(keyNew); // h1(keyNew)

inc = increment(keyNew); // h2(keyNew)

for (i=0;i<=TABSIZE;i++)

{

 printf("trying to add just %d to total of probe lengths\n",i+1);

 for (j=i;j>=0;j--)

 {

 jj = (init + inc * j)%TABSIZE; // jj is the subscript for probe j+1 for keyNew

 keyOld = r[jj];

 ii = (jj+increment(keyOld)*(i-j))%TABSIZE; // Next reprobe position for keyOld

 printf("i=%d j=%d jj=%d ii=%d\n",i,j,jj,ii);

 if (r[ii] == (-1)) // keyOld may be moved

 {

 r[ii] = keyOld;

 r[jj] = keyNew;

 n++;

 return;

 }

 }

}

}
Gonnet’s Binary Tree Hashing - Generalizes Brent’s Rehash (aside)

http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=800105.803401
Has same goal as Brent’s Rehash (minimize increase in the total number of probes to search for all keys), but allows moving an arbitrary number of other keys.

“Binary Tree” refers to the search strategy for minimizing the increase in probes:

a.
Root of tree corresponds to placing (new) key at its
[image: image19.emf]

€

h1

h

1

 slot (assuming slot is empty).

b.
Left child corresponds to placing key of parent using same strategy as parent, but then moving the key from the taken slot using one additional
[image: image20.emf]

€

h2

h

2

 offset. (The old key is associated with this left child.)

c.
Right child corresponds to placing key of parent using one additional
[image: image21.emf]

€

h2

h

2

 offset (assuming slot is empty). (The key of parent is also associated with this right child.)

Search can either be implemented using a queue for generated tree nodes or by a recursive “iterative deepening”.

Expected probes for successful search ≤ 2.14. (Assuming uniform access probabilities.)
Cuckoo Hashing (not in book, http://www.itu.dk/people/pagh/papers/cuckoo-undergrad.pdf)
A more recent open addressing scheme with very simple reorganization.

Presumes that a low load factor is maintained by using dynamic tables (CLRS 17.4).

Based on having two hash functions, but no reprobing is used:

[image: image22.png]procedure insert(z)
i€ T[hy(2)] = = or Tlhs(x)] = = then return;
pos — ha(z);
loop n times {
if T[pos] = NULL then { T'[pos] « z; return};
@ « Tpos];
if pos= ha (z) then pos— ha(z) else pose— ha(z):}
rehash(); insert(z)
end

Perfect Hashing (CLRS 11.5)

Static key set

Obtain O(1) hashing (“no collisions”) using:

1.
Preprocessing (constructing hash functions)

and/or

2.
Extra space (makes success more likely) - want cn, where c is small

Many informal approaches - typical application is table of reserved words in a compiler.

CLRS approach:

1.
Suppose n keys and m = n2 slots. Randomly assigning keys to slots gives prob. < 0.5 of any collisions.

2.
Use two-level structure (in one array):

[image: image23.emf]

0

n-1

j . . .
nj

nj a b
nj2 slots

(see CLRS, p. 278)

0

n-1

j

. . .

nj

nj a b

n

j

2

slots

(see CLRS, p. 278)

[image: image24.emf]

€

E n j2[]∑ < 2n

En

j

2

[]

å <

2

n

, but there are three other values when
[image: image25.emf]

€

n j >1

n

j>

1

 and one other value otherwise.

Brent’s method - about 19.8 million keys

0.910 l.f. expected=1.837 CPU 3.709

0.920 l.f. expected=1.867 CPU 3.810

0.930 l.f. expected=1.901 CPU 3.920

0.940 l.f. expected=1.938 CPU 4.045

0.950 l.f. expected=1.980 CPU 4.187

0.960 l.f. expected=2.028 CPU 4.354

0.970 l.f. expected=2.085 CPU 4.560

0.980 l.f. expected=2.155 CPU 4.838

0.990 l.f. expected=2.252 CPU 5.290

Retrievals took 2.410 secs

Worst case probes is 47

Total probes 44319520

Expected probes is 2.238

Probe counts:

Number of keys using 1 probes is 9597267

Number of keys using 2 probes is 4793331

Number of keys using 3 probes is 2315618

Number of keys using 4 probes is 1201658

Number of keys using 5 probes is 682835

Number of keys using 6 probes is 403494

Number of keys using 7 probes is 257422

Number of keys using 8 probes is 166305

Number of keys using 9 probes is 112059

Number of keys using 10 probes is 76750

Number of keys using 11 probes is 53787

Number of keys using 12 probes is 37887

Number of keys using 13 probes is 27777

Number of keys using 14 probes is 19969

Number of keys using 15 probes is 14443

Number of keys using 16 probes is 10590

Number of keys using 17 probes is 7893

Number of keys using 18 probes is 5808

Number of keys using 19 probes is 4082

Number of keys using 20 probes is 3046

Number of keys using 21 probes is 2147

Number of keys using 22 probes is 1560

Number of keys using 23 probes is 1223

Number of keys using 24 probes is 846

Number of keys using 25 probes is 628

Number of keys using 26 probes is 465

Number of keys using 27 probes is 320

Number of keys using 28 probes is 222

Number of keys using 29 probes is 175

Number of keys using >=30 probes is 395
Gonnet’s method - about 19.8 million keys

maxkeysmoved is now 1

0.010 l.f. expected=1.005 CPU 0.024

0.130 l.f. expected=1.066 CPU 0.341

maxkeysmoved is now 2

0.420 l.f. expected=1.231 CPU 1.248

maxkeysmoved is now 3

0.580 l.f. expected=1.348 CPU 1.880

maxkeysmoved is now 4

0.770 l.f. expected=1.542 CPU 2.823

maxkeysmoved is now 5

0.880 l.f. expected=1.715 CPU 3.786

maxkeysmoved is now 6

0.940 l.f. expected=1.860 CPU 4.850

maxkeysmoved is now 7

0.950 l.f. expected=1.891 CPU 5.235

0.960 l.f. expected=1.925 CPU 5.694

0.970 l.f. expected=1.965 CPU 6.326

maxkeysmoved is now 9

0.980 l.f. expected=2.010 CPU 7.397

0.990 l.f. expected=2.067 CPU 9.891

0.990 l.f. expected=2.067 CPU 9.891

Retrievals took 2.426 secs

Worst case probes is 20

Total probes 40709494

Expected probes is 2.056

Probe counts:

Number of keys using 1 probes is 9039472

Number of keys using 2 probes is 5332877

Number of keys using 3 probes is 2825972

Number of keys using 4 probes is 1399169

Number of keys using 5 probes is 671102

Number of keys using 6 probes is 301893

Number of keys using 7 probes is 135027

Number of keys using 8 probes is 56484

Number of keys using 9 probes is 23258

Number of keys using 10 probes is 9199

Number of keys using 11 probes is 3450

Number of keys using 12 probes is 1291

Number of keys using 13 probes is 502

Number of keys using 14 probes is 192

Number of keys using 15 probes is 71

Number of keys using 16 probes is 29

Number of keys using 17 probes is 8

Number of keys using 18 probes is 2

Number of keys using 19 probes is 2

Number of keys using 20 probes is 2

Number of keys using 21 probes is 0

Number of keys using 22 probes is 0

Number of keys using 23 probes is 0

Number of keys using 24 probes is 0

Number of keys using 25 probes is 0

Number of keys using 26 probes is 0

Number of keys using 27 probes is 0

Number of keys using 28 probes is 0

Number of keys using 29 probes is 0

Number of keys using >=30 probes is 0
CLRS Perfect Hashing - 19.8 million keys

malloc'ed 158400000 temporary bytes

malloc'ed 79200000 permanent bytes

realloc for 250328152 more permanent bytes

final structure will use 16.643 bytes per key
Subarray statistics:

Number with 0 keys is 7284696

Number with 1 keys is 7283515

Number with 2 keys is 3641233

Number with 3 keys is 1214078

Number with 4 keys is 304196

Number with 5 keys is 60575

Number with 6 keys is 10072

Number with 7 keys is 1411

Number with 8 keys is 201

Number with 9 keys is 21

Number with 10 keys is 2

Number with 11 keys is 0

Number with 12 keys is 0

Number with 13 keys is 0

Number with >=14 keys is 0

Time to build perfect hash structure 4.912

Time to retrieve each key once 4.478
Bloom Filters (not in CLRS)

http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=362686.362692
http://en.wikipedia.org/wiki/Bloom_filter

M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge Univ. Press, 2005.

m bit array used as filter to avoid accessing slow external data structure for misses

k independent hash functions for the m bit array
Static set of n elements to be represented in filter, but not explicitly stored:

for (i=0; i<m; i++)

 bloom[i]=0;

for (i=0; i<n; i++)

 for (j=0; j<k; j++)

 bloom[(*hash[j])(element[i])]=1;

Testing if candidate element is possibly in the set of n:

for (j=0; j<k; j++)

{

 if (!bloom[(*hash[j])(candidate)])

 <Can’t be in the set>

}

<Possibly in set>

The relationship among m, n, and k determines the false positive probability p.

Given m and n, the optimal number of functions is
[image: image26.emf]

€

k = m
n ln2

k

=

m

n

ln2

 to minimize
[image: image27.emf]

€

p = 1
2()k

p

=

1

2

()

k

.

More realistically, m may be determined for a desired n and p:
[image: image28.emf]

€

m = − n ln p
ln2()2

m

=-

nlnp

ln2

()

2

 (and
[image: image29.emf]

€

k = lg 1p

k

=

lg

1

p

).

What interesting property can be expected for an optimally “configured” Bloom filter?

(m coupon types, nk cereal boxes . . . how many 0’s and 1’s in bit array?)

Aside: A high-level survey of the broad range of hashing techniques and applications

https://dl-acm-org.ezproxy.uta.edu/citation.cfm?id=3047307

_1001435587.unknown

_1182881165.unknown

_1308574531.unknown

_1371458461.unknown

_1378980334.unknown

_1308574810.unknown

_1242307176.unknown

_1242307306.unknown

_1243002430.unknown

_1242307074.unknown

_1116763085.unknown

_1182881151.unknown

_1055956613.unknown

_1055956621.unknown

_1012713664.unknown

_1055956446.unknown

_1012713870.unknown

_1001435603.unknown

_1001434997.unknown

_1001435122.unknown

_1001434790.unknown

