
CSE 5311 Notes 7: Disjoint Sets

(Last updated 10/1/16 2:18 PM)

CLRS, Chapter 21

Problem: For an equivalence relation (e.g. the partition of a set into equivalence classes):

1. Determine if two elements are equivalent (FIND), and

2. Allows merging (UNION) of equivalence classes.

Naive implementation - indicate subset for each element

1 2 3 4 5 6 7 8
1 12 2 3 34 4

Represents equivalence relation:

 {1, 3} {2, 4} {5, 8} {6, 7}

UNION takes O(n) time - can do much better!!!!

Galler-Fischer Representation - Use trees (in an array) with just parent pointers

1 2 3 4 5 6 7 8
1 12 2 5 57 7

3

1

4

2

8

5

6

7

 Trade-off:

 Increase in time to check equivalence (FIND)

 vs.

 Simplicity in merging (UNION) - redirect one root to another, then reduce depth

 2
UNION-BY-WEIGHT (size)

Keep subtree size in root (or separate array). If integer tables, then negative value for pointer indicates
that the root’s size (negated) is stored.

1 2 3 4 5 6 7 8
-3 -21 3 7 77 -5

0 9

1 3 7

0 2 4 5 6 8

9

1 8

Theorem: For any node x with height

€

h Tx() in union-by-weight and size

€

s Tx() ,

€

2h Tx() ≤ s Tx().

Proof: By induction

 Single node (as initialized):

€

s Tx() =1 and h Tx() = 0

So, 2h Tx() = 20 ≤ s Tx()

 Property holds before union and holds afterwards:

€

Suppose Tv and Tw are to be unioned. WOLOG, s Tv() ≤ s Tw().

2h Tv() ≤ s Tv() and 2h Tw() ≤ s Tw()

v

Tv

w

TwT =

 3

Show that

€

2h T() ≤ s T() :

€

2h T() = 2max 1+h Tv(),h Tw()() = max 21+h Tv(),2h Tw()"

$

%

&
'

 ≤max 2s Tv(),s Tw()() 2h Tv() ≤ s Tv() and 2h Tw() ≤ s Tw()
 ≤max s T(),s Tw()() s Tv() ≤ s Tw() and s Tv() + s Tw() = s T()
 ≤max s T(),s T()() = s T() s Tw() ≤ s T()

Corollary:

€

h T() ≤ log s T()

So, FINDs under union-by-weight take O(log n)

UNION-BY-RANK (upper bound on tree height)

Keep subtree rank (height) in root (or separate array).

1 2 3 4 5 6 7 8

1 3-1 7 7 8-2 7
109

1 3 7

10 2 4 5 6 8

9

-1 1

Theorem: For any node x with rank

€

r Tx() in union-by-rank and size

€

s Tx() ,

€

2r Tx() ≤ s Tx()

Proof: Very similar to union-by-weight.

Corollary:

€

r T() ≤ log s T()

So, FINDs under union-by-rank take O(log n)

 4
PATH COMPRESSION

Method 1: Use indirection while following the path for a FIND:

 while (id[i]!=i)
 i=id[i]=id[id[i]];
 return i;

2

61

4

3

7

5

FIND(7)

2

1

4

6

7

5

3

Method 2 (CLRS): After a FIND reaches a tree’s root, a second (backward) pass along the path makes
every node point directly to the root.

2

61

4

3

7

5

FIND(7)

2

1 4 6 7

5

3

Can easily combine with union-by-weight or union-by-rank.

Under union-by-rank, path compression causes each rank to be just an upper bound on the height.

In addition, the amortized cost of FIND and UNION will be nearly constant (inverse of extremely fast-
growing function).

 5
APPLICATIONS

1. Kruskal’s Minimum Spanning Tree

 Sort edges in ascending order.

 Place each vertex in its own set.

 Process each edge {x, y} in sorted order:

 a=FIND(x)
 b=FIND(y)
 if a ≠ b
 UNION(a,b)
 Include {x, y} in MST

2. Many parallel algorithms use similar ideas. (See books by Ja Ja or Reif)

3. Connected components for undirected graphs. (CLRS 21.1)

4. First-order unification / logic programming / tree matching / type inference (ACM Computing

Surveys 21:1, March 1989, fig. 4, http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=62029.62030)

5. Off-line least common ancestors (CLRS, p. 584 http://ranger.uta.edu/~weems/NOTES5311/LCAoffline.c)

 • Union-find structure maintains subsets of nodes that have been processed.

 • Separate array (“ancestor”) maintains the dominant node for each subset.

 • Processed by depth-first traversal (left to right)

• When going down to a node, initialize its subset.

• When going up to node X from node Y, union for X and Y subsets,
 make X dominant.

• Before going up to node X from node Y, process any input query pair {Y, Z} where Z has

already been processed completely.

 6

(Aside: M.A. Bender and M. Farach-Colton, “The LCA Problem Revisited”, May 2000,
http://www.cs.sunysb.edu/~bender/newpub/BenderFa00-lca.pdf connects LCA to the range minimum query
problem and cartesian trees. Used for document retrieval and parallel techniques.)

6. Find pairs of co-planar polygons sharing an edge in 3-d convex hull (Spring 2005 CSE 5392,

http://ranger.uta.edu/~weems/NOTES5319/LAB2/dcel.html)

 7
7. Maximum cardinality k-coloring of a set of intervals - a scheduling problem (generalizes CSE 2320

Notes 6.B)

M.C. Carlisle and E.L. Lloyd, “On the k-coloring of intervals”, Discrete Applied Mathematics 59, 1995,
225-235, http://www.sciencedirect.com.ezproxy.uta.edu/science/article/pii/0166218X9580003M

Sort intervals in ascending right-end ordering (as in example below)
Generate k + 1 dummy intervals (0 indicates “could not color”)
Determine the (rightmost left-) adjacent interval for each interval
Initialize a union-find tree for each interval (simplified to linked lists here)
for each non-dummy interval i, according to the sorted order
 j = Number of the interval at the end of the list for the interval adjacent to i (FIND)
 if color of j is 0
 Color i with 0
 // If a later interval reaches i from its adjacent interval, then i - 1 might lead to a back-up
 Link i to i - 1 (FIND & UNION)
 else
 Color i with color of j
 // If a later interval reaches j from its adjacent interval, then j - 1 might lead to a back-up
 Link j to j - 1 (FIND & UNION)

3-coloring instance:

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

13

14

15

