
CSE 5311 Notes 11:  Intractability 
 

(Last updated 3/27/17 5:00 PM) 
 
ELEMENTARY CONCEPTS 
 
Satisfiability:  

€ 

p∨q( )∧ p∨q ( )∧ p ∨q( )∧ p ∨q ( ) 
 
  Is there an assignment?  (Decision problem, rather than an optimization problem) 
 
  Similar to debugging a logic circuit - Is there an input case that turns on the output LED? 
 
  Aside:  Evaluating one input setting for a circuit is P-complete ⇒ hard to massively parallelize. 
 
  https://en.wikipedia.org/wiki/Boolean_satisfiability_problem 
 
 https://complexityzoo.uwaterloo.ca 

 
NP-complete means (informally): 
 

1. The problem may be computed (“decided”) in nondeterministic polynomial time. 
 

a. Guess a solution (polynomial time - easy to get) 
 
b. Check the solution in polynomial time (deterministic). 
 
Checking (“verification”) is easier than computing. 

 
2. All problems in NP may be transformed (“reduced”) to this problem in polynomial time. 
 

If an instance of one problem is transformed to an instance of another, the new problem has a 
solution iff the old problem has a solution. 
 

Instances of all problems in NP Instances of new problem 
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Showing that all NP problems reduce to new problem is unnecessary.  Instead, find another 
NP-complete problem: 
 

Instances of all 
problems in NP

Instances of old 
NP-complete 

problem
Instances of new

problem

Difficult proof technique -
required for “first”

NP-complete problem
(satisfiability - Cook’s theorem)

Polynomial
Time

“Easy” proof 
technique

 
 

Property 1 without property 2 - problem is just in NP (upper bound).  Example:  Is a table sorted? 
 
Property 2 without property 1 - problem is said to be “NP-hard” (lower bound - at least as 
difficult as all other problems in NP).  Note:  property 1 is usually trivial to establish and is often 
omitted in proofs. 

 
Significance of a problem being NP-complete 
 

No polynomial-time algorithm is known for any NP-complete problem.  (Only exponential time) 
 
If a polynomial-time algorithm is known for one NP-complete problem, then there is a 

polynomial-time algorithm for every NP-complete problem. 
 
Exponential lower bound has never been shown. 
 
If difficult instances of an NP-complete problem arise in practice, then approximation schemes 

with bounds on the quality of the solution are needed. 
 
What about playing chess?   

 
Example Problems: 
 

Satisfiability 
 
Graph (Vertex) Coloring 
 
Job Scheduling with Penalties - durations, deadlines, penalties (single processor) 
 
Bin Packing - how many fixed-sized bins are needed to hold variable-sized objects? 
 
Knapsack - how many objects with different profits and sizes should go into a knapsack? 
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Subset Sums - is there a subset whose sum is a particular value? 
 
Hamiltonian Path - does a graph (or digraph) have a path including each vertex exactly once? 
 
Hamiltonian Circuit - is there a cycle including each vertex exactly once? 
 
Traveling Salesperson - minimize distance for Hamiltonian circuit 
 
Steiner subgraph - is there a connected subgraph (tree) that includes designated terminal vertices 

and whose total weight does not exceed a given value?  (Euclidean version is NP-hard, 
http://www.geosteiner.com ) 

 
Exact spanning tree 

 
REDUCTIONS 
 
Important resource - M.R. Garey and D.S. Johnson, Computers and Intractability:  A Guide to the 

Theory of NP-Completeness, Freeman, 1979.  
 
Suppose you know directed Hamiltonian circuit is NP-complete.  Show that undirected Hamiltonian 

circuit is NP-complete (CLRS 34.5.3, especially Figure 34.17, gives a reduction from vertex cover): 
 

1. Replace each vertex x by three vertices x1, x2, x3 connected as:  
 

 
x1 x2 x3  

 
2. Include an edge {u3, v1} for each edge (u, v) in the directed graph. 
 

u

z

y

x w

v

u1 u2 u3

z1 z2 z3y1 y2 y3

x1 x2 x3 w1 w2 w3

v1 v2 v3
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Leaving out x2 will not work - allows going in wrong direction: 
 
A B C D A1 A3

B1 B3

C1 C3

D1 D3

A1 A2 A3

B1 B2 B3

C1 C2 C3

D1 D2 D3  
 
Show 3-satisfiability is NP-complete by reduction from conjunctive normal form satisfiability. 
 

In CNF an expression is a conjunction of several clauses (disjunctions). 
 
Each clause has several literals which may be asserted or negated. 
 
The reduction is based on replacing each clause with k > 3 literals by k - 2 clauses for 3-
satisfiability and introducing k - 3 new variables: 
 

 

€ 

A∨B∨C∨D∨ E ∨F ∨G
A ,  B ,  C ,  D ,  E ,  F ,  G 

A∨B∨ X1
X 1∨C∨ X2
X 2 ∨D∨ X3
X 3∨ E ∨ X4
X 4 ∨F ∨G
A ,  B ,  C ,  D ,  E ,  F ,  G 

 

 
Note, however, that 2-satisfiability is in P.  Convert to a graph problem by replacing each 

€ 

P∨Q 

by P Q  and Q P  based on 

€ 

A → B ≡ A ∨B . 
 
If there is a path from 

€ 

X  to X, then X is true. If there is a path from X to 

€ 

X , then X is false. 
 
If X and 

€ 

X  are in a cycle, then the expression is unsatisfiable. 
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Consider 

€ 

A,  B,  A ∨B : 
 

  

A A

B B

 
 
Show that graph 3-colorability is NP-complete by a reduction from 3-sat. 
 

This reduction is fairly difficult.  Others are much worse. 
 
Conceptually, we will call the 3 colors TRUE, FALSE, and RED. 
 
Since coloring is usually viewed as assigning the numbers 0, 1, 2 to the vertices, for any 

successful coloring there are five renamings based on permutations. 
 
The reduction starts with a triangle to establish which number has which color: 
 

TRUE

FALSE RED
 

 
For each variable X, another triangle is needed to constrain the value: 
 

RED

X

X  
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For each clause 

€ 

X ∨Y ∨Z  the following pattern is used.  At least one of X, Y, and Z is forced to 
be true. 

 

X

Y

Z

A

B
C

D

E
TRUE

Widget

TRUE

 
 
Observe: 
 
1. X, Y, and Z must have the same color as TRUE or FALSE. 
 
2. One of D and E has the same color as FALSE, the other the same color as RED. 
 
3. If E has the same color as FALSE, then Z has the same color as TRUE. 
 
4. If E has the same color as RED, then D has the same color as FALSE. 
 
Summary: 
 

 A B C D E X Y Z 
 
 TRUE RED ??? FALSE RED FALSE FALSE FALSE 
   (4th color!) 
 
 TRUE RED FALSE RED FALSE FALSE FALSE TRUE 
 TRUE FALSE RED FALSE RED FALSE TRUE FALSE 
 TRUE FALSE RED FALSE RED FALSE TRUE TRUE 
 FALSE TRUE RED FALSE RED TRUE FALSE FALSE 
 FALSE TRUE RED FALSE RED TRUE FALSE TRUE 
 FALSE RED TRUE FALSE RED TRUE TRUE FALSE 
 FALSE RED TRUE FALSE RED TRUE TRUE TRUE 
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Unsatisfiable instance - graph will require 4 colors 

 
 

€ 

A 
B 
B∨C 
A∨B∨C

 

Widget 1

Widget 2

Widget 3

Widget 4

TRUE

FALSERED

A

B

B

C

A

C

 
 
If 

€ 

A  is removed, 3 coloring is possible. 
 
k-clique - Is there a complete subgraph with k vertices? 
 
Show k-clique is NP-complete by a reduction from 3-sat. 
 

Each literal becomes a vertex. 
 

Connect each vertex to the vertices for all other clauses, except for  X X  
 
Is there a clique with one vertex per clause (i.e. k is the number of clauses)? 
 



€ 

A 
B 
B∨C 
A∨B∨C

 

 
 

A

B

B

C

A B C

 
 

 
Vertex Cover = set of vertices such that every edge has at least one incident vertex in cover. 
 
Is there a vertex cover with no more than p vertices? 
 
  Reduce from k-clique: 
 

1. Take complement of graph.  (Edge is in complement iff edge is not in graph.) 
 
2. Is there a |V| - k cover?  (Choose vertices not in the k-clique.) 
 
From k-clique example - Is there a 3-cover? 
 

A

B

B

C

A B C
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Consider clique when first clause is removed. 

 

€ 

B 
B∨C 
A∨B∨C

 

 
 

B

B

C

A B C

 
 

3-vertex cover 
 

B

B

C

A B C

 
 
 
Show Steiner subgraph is NP-complete by a reduction from 3-sat. 
 

Steiner vertex for each possible literal on n propositions. 
 
Terminal vertex for each of m clauses, u, and v. 
 
Unit-weight edges in subgraph with u, v, and literal vertices (for choosing assignment).  
 
Edges with weight 2n + 1 between each clause vertex and vertices for its literals 
 
Is there a subgraph with total weight not exceeding 2n + m(2n + 1)? 
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€ 

A 
B 
B∨C 
A∨B∨C

 

 
n=3, m=4 
2n+1=7 
2n + m(2n + 1)=34 

u v

€ 

A

€ 

A 

€ 

B 
€ 

B

€ 

C

€ 

C 

€ 

A∨B∨C

€ 

B∨C 

€ 

B 

€ 

A  
 

€ 

B 
B∨C 
A∨B∨C

 

 
n=3, m=3 
2n+1=7 
2n + m(2n + 1)=27 

u v

€ 

A

€ 

A 

€ 

B 
€ 

B

€ 

C

€ 

C 

€ 

A∨B∨C

€ 

B∨C 

€ 

B  
 

 
Three reduction exercises, solutions are at:  
http://ranger.uta.edu/~weems/NOTES5311/NEWNOTES/notes11.reductions.pdf 
 
1.  Show that deciding whether an undirected graph is 5-colorable is NP-complete by a simple reduction 
from the 3-colorability problem.  In addition to your proof, give an example of your reduction on a 3-
colorable graph. 
 
2.  Prove that the set packing problem is NP-complete. 
 
Hint 1:  There is a straightforward reduction from k-clique. 
Hint 2:  It is often helpful to give an example of the reduction used. 
 
INSTANCE: Collection C of finite sets, positive integer 

€ 

K ≤ C . 
QUESTION: Does C contain at least K mutually (i.e. pairwise) disjoint sets? 
 
3.  The hitting set problem gives a collection C of subsets of a set S and a positive integer k.  We would 
like to know if there is a subset S’ of S with |S’| ≤ k such that S’ contains at least one element from each 
subset in C.   Give a proof that hitting set is NP-complete by using the fact that vertex cover is NP-
complete. 
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APPROXIMATION 
 
Goal:  Performance guarantees for optimization (NP-hard) problems corresponding to NP-complete 

problems. 
 

1. How fast? 
 
2. Approach: 
 
 Greedy 
 Online 
 Preprocessing (e.g. MST, DFS) 
 Randomization 
 Restricted cases (e.g. spare or dense, planar graphs) 
 (SAT solvers - http://www.satcompetition.org/ 

http://www.nytimes.com/1999/07/13/science/separating-the-insolvable-and-the-merely-

difficult.html ) 
 (Fixed Parameter Tractability - http://fpt.wikidot.com/ ) 
 (Parallelism?) 
 
3. Quality of solution 
 

 

€ 

max ratio = Optimal
Solution  ≥1 (e.g. knapsack)

min ratio = Solution
Optimal ≥1  (e.g. TSP)

 

 
4. Generality 
 
 Approximation Algorithm - achieve max/min ratio in 

€ 

Ο nk# 
$ 
% & 

' 
(  time (k fixed) 

 
 Approximation Scheme - flexible ratio 1 + ε in 

€ 

Ο f n,ε( )( )  
 

 Polynomial-time Approximation Scheme - 

€ 

Ο n f ε( )$ 

% 
& 

' 

( 
)  

 

 Fully PTAS - 

€ 

Ο nk 1
ε( )l

$ 

% 
& 

' 

( 
)  time 

 
 Seminal papers (aside): 

 
  http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=290179.290180 

 
  http://epubs.siam.org.ezproxy.uta.edu/doi/abs/10.1137/S0097539796309764 
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Examples are presented in ascending order of min/max ratio 
 
Edge Coloring (http://ranger.uta.edu/~weems/NOTES5311/misraGriesNew.c) 
 
  An unusually optimistic situation . . . 
 

0 1

2

0

0

1 1

0

1

2

34

0
1

2

0

3 4

3
2

1
4

 
 
  Vizing’s Theorem 
 

€ 

Δ G( ) ≤ $ Χ G( ) ≤ Δ G( ) +1 (Required number of colors is either degree (“Class 1”) or 
degree + 1 (“Class 2”).  For bipartite graphs, 

€ 

Δ G( ) = # Χ G( ) .) 
 

 NP-complete to test if 

€ 

Δ G( ) = # Χ G( ) , but takes only O(VE) to color with 

€ 

Δ G( ) +1 colors (

€ 

Δ G( ) 
for bipartite) in an incremental fashion.  Thus: 

 

  

€ 

min ratio ≤
Δ G( ) +1

$ Χ G( )
≤
Δ G( ) +1
Δ G( )

 

 
        What if? 
 

 

x y

A

B

C

D

E

F

G

H

?

0

4

2

3

2

0

3

5

free={1,5} free={1,4}

∩={1}   

x y

A

B

C

D

E

F

G

H

?

0

1

2

3

2

3

4

5

free={4,5} free={0,1}

∩=∅  
 
  So, steal a color from another edge and give that edge a new color. 
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  HOW? 
 
  Aside:  The simpler problem of coloring a bipartite graph using Δ colors. 
 

From p. 347 of H.N. Gabow, “Using Euler Partitions to Edge Color Bipartite Multigraphs”, Int’l 
J. of Computer and Information Sciences 5(4), 1976, 345-355: 
 
Now we describe a method for coloring due to Vizing.  Originally each edge of G is uncolored; it 
must be assigned one of Δ possible colors.  An uncolored edge (v, w) is colored as follows.  At 
most Δ - 1 edges incident to v are colored, so some color a is missing at v; similarly, some color 
b is missing at w.  Construct an “alternating (a, b) path” starting at w, as follows.  The path 
begins with the edge incident to w that is colored a (if it exists).  Consecutive edges in the path 
are alternately colored a and b.  The path ends at the vertex z where the next color is missing.  It 
is easy to see that z ≠ v, w if the graph is bipartite. 
 
Interchange colors along the path, switching a to b and b to a.  This makes color a missing at 
both v and w, since z ≠ v, w.  Edge (v, w) can now be colored a. 
 

v w?

free={a} free={b}
a

b

a

a

a

b

b

b

bz? z?

b

.

.

.

 
 

  Back to non-bipartite . . . 
 
  Most general case - maximal fan with free(X) ∩ free(f) = ∅. 
 
  If no edge incident to X is colored with last free color d, immediately “rotate” fan: 
 
 



 14 

  

X

f

A

B

C

Y

Z

?

0

1

2

k

.

.

.

{c,d,. . .}

{0,. . .}

{1,. . .}

{2,. . .}

{3,. . .}

{k,. . .}

{d,. . .}   

X

f

A

B

C

Y

Z

0

1

2

k

.

.

.

3

d

{c,. . .}

{0,. . .}

{1,. . .}

{2,. . .}

{k,. . .}

{. . .}

 
 
While maximizing the fan, suppose the next color (d) is already on an earlier fan edge: 
 

X

f

A

B

C

Y

Z

?
0

1

d=j+1

k

{c,. . .}

{0,. . .}

{1,. . .}

{2,. . .}

{j+2,. . .}

{k,. . .}

{d=j+1,. . .}

c
d

c
d

. . .

. . .
{d=j+1,. . .}j

. . .

 
 

1. Find (alternating) dc-path starting with X-C. 
 
 dc-path (above) reaches no more than one of B or Z.  (Why?) 
 
2. Invert colors (c ↔ d) along entire dc-path. 
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a. Neither B or Z reached - fan now stops at B. 
 

X

f

A

B

C

Y

Z

?
0

1

c

k

{d,. . .}

{0,. . .}

{1,. . .}

{2,. . .}

{j+2,. . .}

{k,. . .}

{d=j+1,. . .}

cd c
d . . .

. . .
{d=j+1,. . .}j

. . .

 
 
b. Z reached - again, fan stops at B. 
 

{c,. . .}

. . .

d

d

X

f

A

B

C

Y

Z

?
0

1

c

k

{d,. . .}

{0,. . .}

{1,. . .}

{2,. . .}

{j+2,. . .}

{k,. . .}

cd c
d . . .

. . .
{d=j+1,. . .}j

. . .
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c. B reached - fan keeps all vertices. 
 

{c. . .}

{j+2,. . .}

d
c

d
c

. . .
d

d
X

f

A

B

C

Y

Z

?
0

1

c

k

{d,. . .}

{0,. . .}

{1,. . .}

{2,. . .}

{k,. . .}

. . .

{d=j+1,. . .}

j

. . .

 
 
3. Rotate fan. 

 
Vertex Cover - Approximation Algorithm 
 
 VC := ∅ 
 for each edge {u, v}   // arbitrary order 
  if u ∉ VC and v ∉ VC 
   VC := VC ∪ {u, v} 
 

1. At termination, VC is a vertex cover. 
 
2. Polynomial time - obvious. 
 
3. a. 

€ 

VCOPT  must cover the set of edges processed based on the “if”. 
 
b. 

€ 

VCOPT  must include at least one of {u, v} for each of these edges, so: 
 

 

€ 

1
2 VC ≤ VCOPT             min ratio ≤

VC
VCOPT

≤ 2  

 
 Aggressive strategy of choosing one vertex from an uncovered edge is vulnerable to “stars”. 
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Minimum Bipartite Vertex Cover - Exact Solution 
 

Max-flow instance is isomorphic to bipartite matching max-flow, except capacities from V1 to 

V2 are ∞. 
 

Set of edges from V1 to V2 with (unit) flow after max-flow is found is a maximum matching.  
The size of a maximum matching gives an (obvious) lower bound on the size of a minimum 
bipartite vertex cover.  (Showing that the size of a maximum matching is also an upper bound is 
more involved -Aside:  https://en.wikipedia.org/wiki/K%C5%91nig's_theorem_%28graph_theory%29 ). 

 
Theorem:  If a minimum S-T cut is known, then 

€ 

V1∩T( )∪ V2∩ S( )  is a minimum bipartite 
vertex cover. 
 
Proof:  Suppose the bipartite graph has an edge 

€ 

v1,v2{ } with 

€ 

v1∈ V1 and 

€ 

v2 ∈ V2 and 

€ 

v1∈ S .  
Since the capacity of 

€ 

v1,v2{ } is ∞, 

€ 

v1,v2{ } is an edge in the residual network and 

€ 

v2 ∈ S  to 
prevent 

€ 

v1,v2{ } from being uncovered.  *** 
 

 

0

1

2

3

4

5

6

7

8

9   

0

1

2

3

4

5

6

7

8

9

s t

1/1

1/1

1/1

1/1

1

1

1/1

1/1

1/1

1/1

∞

∞

∞/1

∞

∞

∞

∞/1

∞/1

∞/1

 
 
 S = {s}   T = {t, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}    

€ 

V1∩T = 0,1,2,3{ }    

€ 

V2∩ S =∅ 
 

 

F

G

H

I

J

K

L

M

A

B

C

D

E

   

F

G

H

I

J

K

L

M

A

B

C

D

E

S T

1/1

1/1

1/

1/1

1/1

1/

1/1

1/1

1/

1/

1/1

1/1

1/

∞/1

∞/1

∞/1

∞/1

∞

∞

∞

∞

∞

∞  
 
 S = {s, B, C, H}   T = {t, A, D, E, F, G, I, J, K, L, M}    

€ 

V1∩T = A,D,E{ }    

€ 

V2∩ S = H{ } 
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Bin Packing (one dimensional) 
 
 Minimize number of unit size bins to hold objects with sizes 

€ 

0 < si ≤1. 
 
 Next Fit 
 
  Online 
 
  Use one bin, then seal when next item doesn’t fit. 
 
  Worst case sequence 
 
   

  

€ 

1
2 ,
1
2N ,

1
2 ,
1
2N ,

1
2 ,
1
2N ,

1
2 ,
1
2N ,! Repeated to get 4N elements 

 

  OPT (offline)  Next Fit  

€ 

NF
OPT ≤ 2 

 
 First-fit Decreasing 
 
  Sort n sizes descending 
 
  For each object, go through bins “left-to-right” to find first bin that object fits in. 
 
  Achieves 

€ 

FF
OPT ≤1.5 (not hard to improve ratio to 4/3, difficult to get 11/9) 

 
  Claim:  Objects placed in extra bins have size ≤ 1/2 
 

  

. . .

1 2 OPT OPT+1 OPT+2  
 
  Proof:  Suppose otherwise. 
 
  Claim:  Number of objects in extra bins ≤ OPT(S) - 1 
 
  Proof:  Suppose OPT(S) extra objects are used. 
 

1. Waste in every OPT bin < size of every object in extra bins. 
 

2. 

€ 

Consider OPTi sum + Extra Objecti( )
i=1

OPT
∑

But since each OPTi sum + Extra Objecti >1, this sum exceeds OPT, a contradiction.

 

 
  Based on the two claims, the number of extra bins ≤ OPT/2 and the ratio is 1.5. 
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Set Cover 

 Input:  Set S and subsets such that 
  

€ 

S = Si
i=1

n
∪  

 
 Output:  Small set of subsets covering S. 
 
 Greedy Technique: 
 

Choose subset with largest number of uncovered elements. 
 
(Implementation:  Doubly-linked list for each element in S.  Doubly-linked list for each 
subset.  Ordered table for priority queue.) 
 
Achieves:  

€ 

Greedy
OPT ≤ ln( largest subset ) +1 

 
See CLRS, p. 1119-1121 for detailed proof. 
 
Example to motivate logarithmic approximation ratio: 
 

   
 
  Optimal solution would use the two subsets of 15 elements rather than four subsets with 
  16, 8, 4, and 2 elements. 
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Traveling Salesperson - Version 1:  complete graph with unrestricted edge weights 
 
 No ρ-approximation in P time (unless P = NP). 

 
Suppose a graph is to be tested for a Hamiltonian cycle: 
 
 Weight each “real” edge with 1. 
 
 “Imaginary” edges are weighted with ρ|V| + 1. 
 
If ρ-approximation gives TSP with length |V|, then performance is better than guaranteed and 
have a Hamiltonian cycle. 
 
If ρ-approximation gives TSP with length > ρ|V|, then performance guarantee has not been met. 
 

Traveling Salesperson - Version 2:  edge weights restricted to obey triangle inequality  
 
 Scale-up trick used in Version 1 proof is avoided. 

 

 

a b

c ≤ a+b  
2-approximate 
 
1. Find minimum spanning tree. 
 
2. Depth-first search - order vertices by discovery time. 
 
3. Return to start vertex. 
 
4. Remove edge crossings - optional 
 

   

a

c

d

b

a

c

d

b
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1

234

5

6

7

8

9 10 
2-approximate proof: 
 
1. 

€ 

MST ≤ TOPT  
 
 Best case - removing largest edge in OPT (a cycle) gives MST. 
 
2. 

€ 

TΔ ≤ 2MST  
 
 Since MST short cuts are no longer than subpath skipped. 
 
 

€ 

1
2 TΔ ≤ MST ≤ TOPT ,  so TΔ ≤ 2TOPT  

 
(Aside:  see http://en.wikipedia.org/wiki/Christofides_algorithm for a 3/2-approximate 

technique.) 
 
Ordinary Exact Subset Sums 
 
 (Recall simple exponential time/space method using table in Notes 0) 
 
 CLRS, p. 1128-1129 - saves space by maintaining lists of reachable sums. 
 
 Each a/b list element gives a reachable sum a and an element’s index b. 
 

1 2 3 4 5 6_ 
2 3 6 11 15 25 
 
Target=36 
 
L0={0/0} 
    2 
 
 
L1={0/0, 2/1} 
    3    5   
 
 
L2={0/0, 2/1, 3/2, 5/2} 
    6    8    9   11 
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L3={0/0,  2/1,  3/2,  5/2,  6/3,  8/3,  9/3,  11/3} 
   11    13    14    16    17    19    20     22 
 
 
L4={0/0,  2/1,  3/2,  5/2,  6/3,  8/3,  9/3,  11/3,  13/4, 
   15    17    18    20    21    23    24     26     28 
  
   14/4,  16/4,  17/4,  19/4,  20/4,  22/4} 
   29     31     32     34     35     37?  
 
 
L5={0/0,  2/1,  3/2,  5/2,  6/3,  8/3,  9/3,  11/3,  13/4, 
   25    27    28    30    31    33    34     36     38? 
 
   14/4, 15/5, 16/4, 17/4, 18/5, 19/4, 20/4, 21/5, 22/4,  
 
 
   23/5, 24/5, 26/5, 28/5, 29/5, 31/5, 32/5, 34/5, 35/5}  
 
 
L6={0/0,  2/1,  3/2,  5/2,  6/3,  8/3,  9/3,  11/3,  13/4, 
 
 
   14/4, 15/5, 16/4, 17/4, 18/5, 19/4, 20/4, 21/5, 22/4, 
 
 
   23/5, 24/5, 25/6, 26/5, 27/6, 28/5, 29/5, 30/6, 31/5, 
 
 
   32/5, 33/6, 34/5, 35/5, 36/6} 

 
 
Approximation for Subset Sums 
 
 Uses intervals to achieve approximation to within ε of desired value. 
 

CLRS, p. 1130-1133, gives fully PTAS based on ε. 
 
1 2 3 4 5 6_ 
2 3 6 11 15 25 
 
Target=33..36 
 
L0={0..3/0} 
    2..5 
 
L1={0..3/0, 3..5/1} 
    3..6    6..8 
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L2={0..3/0, 3..5/1, 5..8/2} 
    6..9    9..11  11..14 
 
 
L3={0..3/0, 3..5/1, 5..8/2, 8..14/3} 
   11..14  14..16  16..19  19..25 
 
 
L4={0..3/0, 3..5/1, 5..8/2, 8..14/3, 14..25/4} 
   15..18  18..20  20..23  23..29    29..40? 
    
 
L5={0..3/0, 3..5/1, 5..8/2, 8..14/3, 14..25/4, 25..36/5} 
   25..28  28..30  30..33  33..39? 
 
 
L6={0..3/0, 3..5/1, 5..8/2, 8..14/3, 14..25/4, 25..36/5} 

 
 
Graph (Vertex) Coloring - no efficient approximation (unless P = NP) 
 

Suppose a P time algorithm exists to color every graph G with 

€ 

Χ G( ) ≥ k  using fewer than 

€ 

4
3Χ G( )  colors, then 3-colorability would be in P. 

 
Proof: 
 
1. 

€ 

Ck  is the complete graph with k vertices. 
 
2. G is an instance of 3-colorability. 
 
3. Graph 

€ 

H = Ck G[ ]  (composition of graphs). 
 

 
G Ck

0

1

3

1

2

1

2
0

 
 
 Each vertex in a copy of G is connected to all vertices in all other copies of G. 
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4. If 

€ 

Χ G( ) = 3, each copy of G requires its own 3 colors, so 

€ 

Χ H( ) = 3k . 
 
 Claimed algorithm would use fewer than 

€ 

4
3 3k( ) = 4k  colors for G to be 3-colorable. 

 
 Otherwise, 

€ 

Χ G( ) > 3 so each copy of G needs at least 4 colors.  

€ 

Χ H( ) ≥ 4k  
 
 Algorithm would then use at least 4k colors to color H. 
 
 So, the claimed algorithm is a P-time decision procedure for 3-colorability. 
 
Thus, such an algorithm is “unlikely”. 

 
(Aside:  https://en.wikipedia.org/wiki/Hadwiger–Nelson_problem ) 


