
CSE 5311 Notes 13:  Computational Geometry 
 

(Last updated 4/17/17 4:39 PM) 
 
SMALLEST ENCLOSING DISK 
 
See section 4.7 of de Berg ( http://dx.doi.org.ezproxy.uta.edu/10.1007/978-3-540-77974-2 ) 
 
Algorithm MINIDISC(P) 
Input. A set P of n points in the plane. 
Output. The smallest enclosing disc for P. 
1.  Compute a random permutation p1, . . . , pn of P. 
2.  Let D2 be the smallest enclosing disc for {p1, p2}. 
3.  for i←3  to n 
4.   do if pi ∈ Di-1 
5.    then Di ←Di-1 
6.    else Di ← MINIDISCWITHPOINT({p1, . . . , pi-1}, pi) 
7.  return Dn 
 
MINIDISCWITHPOINT(P, q) 
Input. A set P of n points in the plane, and a point q such that there exists an 
  enclosing disc for P with q on its boundary. 
Output. The smallest enclosing disc for P with q on its boundary. 
1.  Let D1 be the smallest enclosing disc with q and p1 on its boundary. 
2.  for j←2  to n 
3.   do if pj ∈ Dj-1 
4.    then Dj ←Dj-1 
5.    else Dj ← MINIDISCWITH2POINTS({p1, . . . , pj-1}, pj, q) 
6.  return Dn 
 
MINIDISCWITH2POINTS(P, q1, q2) 
Input. A set P of n points in the plane, and two points q1 and q2 such that there  
  exists an enclosing disc for P with q1 and q2 on its boundary. 
Output. The smallest enclosing disc for P with q1 and q2 on its boundary. 
1.  Let D0 be the smallest enclosing disc with q1 and q2 on its boundary. 
2.  for k←1  to n 
3.   do if pk ∈ Dk-1 
4.    then Dk ←Dk-1 
5.    else Dk ←  the disc with q1, q2, and pk on its boundary 
6.  return Dn 
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FUNDAMENTAL PREDICATES 
 
See http://www.cs.cmu.edu/~quake/robust.html or O’Rourke’s book for more details. 
 
Twice the (signed) area of a triangle A(T) is given by: 
 

  

€ 

2A T( ) =

xa ya 1
xb yb 1
xc yc 1

=
xb − xa yb − ya
xc − xa yc − ya

= xb − xa( ) yc − ya( ) − xc − xa( ) yb − ya( ) 

 
  If positive, then points a, b, and c make a left turn (counter-clockwise). 
 
  If negative, then points a, b, and c make a right turn (clockwise). 
 
  If zero, then points a, b, and c are collinear.  
 
Relationship of a point a to counter-clockwise circle of points b, c, and d. 
 

  

€ 

xa ya xa
2 + ya

2 1
xb yb xb

2 + yb
2 1

xc yc xc
2 + yc

2 1
xd yd xd

2 + yd
2 1

Zero :   on circle
Positive :   outside
Negative :   inside

 

 
If the vertices 

€ 

vi = xi,yi( )  of a polygon are labeled counter-clockwise, the area is: 
 

€ 

1
2 xiyi+1 − yixi+1( )
i=0

n−1
∑ = 12 xi + xi+1( ) yi+1 − yi( )

i=0

n−1
∑  

 
PROXIMITY 
 
Closest points in 1-d space ( http://ranger.uta.edu/~weems/NOTES5311/1dclosest.c ) 
 
   
 

1. Find median of point set.  (Notes 6) 
 
2. Recursively determine closest pair on both left side and right side. 
 
3. Check whether rightmost point on left side and leftmost on right side are a closer pair than 2. 
 
Worst-case:  

€ 

Θ n logn( )  
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Closest points in 2-d space ( http://ranger.uta.edu/~weems/NOTES5311/2dclosest.c ) 
 

Brute-force:  
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Θ n2# 
$ 
% & 

' 
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Divide-and-conquer: 
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1. Draw vertical line to divide into equal-size subsets. 
 
2. Recursively find closest pair for left and right sides.  Let δ be the smaller of the two 

distances. 
 
3. Find closest pair among points within δ of the dividing line (the seam). 
 

Since the point set is not random, details must assure that 
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Θ n2# 
$ 
% & 

' 
(  behavior is avoided. 

 
Base Case:  If n ≤ 3 (or some other constant), use brute-force. 
 
To support the “divides” and the seam processing, the set of points is preprocessed: 
 
1. Create array with points sorted by x-coordinate. 
 
2. Create second array with points sorted by y-coordinate.  Also include cross-references to x-

ordered array. 
 
When a “divide” by a vertical line is needed, the first array is trivial to split and the second array 

is split by using the cross-references. 
 
The y-ordered array facilitates finding the closest pair across the seam. 
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For a given left-side seam point, the distances to at most six right-side seam points are needed. 
 

€ 

T n( ) = 2T n
2( ) +Θ n( ) =Θ n logn( )  

 
CONVEX HULLS 
 
Determine smallest convex polygon that includes all points in a 2-d set. 
 
Graham scan - Based on angular sweep w.r.t. the (leftmost) bottom point X and maintaining stack with 

convex hull. 
 

1. Find X. 
 
2. Sort by angle w.r.t. X.  Comparisons by testing “turns” and breaking collinear cases by 

taking farthest point first.  (No arctangents needed.) 
 
3. Push X and first two sweep points. 
 
4. for each point P in sorted order 
 
  while next-to-top-of-stack, top-of-stack, and P do not make a left turn 
 
   Discard top-of-stack (it’s not in convex hull) 
 
  Push P 
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Jarvis march (rubberbanding or gift-wrapping) 
 

Runs in 
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Θ nh( ) time where h is the number of hull points 
 
Good for cases like: 
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Same initial point X as Graham scan. 
 
Also need (leftmost) top point Y. 
 
Each successive hull point is found by finding minimum angle WRT the last point and the 

horizon. 
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Convex hull may be used to find the diameter of a point set using 

€ 

Θ h( ) additional time.  
https://en.wikipedia.org/wiki/Rotating_calipers 
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SWEEP-LINE ALGORITHMS 
 
Simple example:  Intersection of rectilinear rectangles 
 

 
 
  Idea:  Sweep a vertical line from left-to-right and store vertical cross-section (sweep-line status). 
 
  Preprocessing:  Sort left and right edges by x-coordinate (event-point schedule). 
 
  Algorithm:  Sweep across x dimension 
 
   Left edge:  Check for intersection.  Insert in interval tree (CLRS, 14.3, p. 350) 
 
   Right edge:  Delete from interval tree 
 
  Runs in 

€ 

Θ n logn + n logm( ) =Θ n logn( ) (m is max rects in tree) 
 
  Difficulty:  What if two rectangles “touch”?  Treat as intersecting or not by how ties are handled. 
 
More significant example:  2-d closest pairs 
 
  Idea:  Incrementally determine δ for the leftmost k points.  Maintain y-ordered BST of points 
  whose x-distance from point k + 1 is < δ. 
 
  Preprocessing:  Sort points by x-coordinate. 
 
  Processing point k + 1: 
 

1. Delete BST points that are at least δ to the left of point k + 1. 
 
2. Examine BST points that are no more than δ below or above point k + 1 and check for 

improving δ. 
 
3. Insert point k + 1 into BST.  (If BST already has a point with same y-coordinate, 

replace it). 
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δ

 
 
  Time: 

€ 

Θ n logn( )  
 
  Reference:  K. Hinrichs, J. Nievergelt, and P. Schorn, “Plane-Sweep Solves the Closest Pair 
   Problem Elegantly”, Information Processing Letters 26 (1988), 255-261.  
 
PLANE PARTITIONS AND POINT LOCATION - (aside) 
 
https://en.wikipedia.org/wiki/Point_location 

 
Chapter 6 of M. de Berg et.al., Computational Geometry, 3rd ed. 
 

Polygonal partitioning by slabs (
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Θ n2# 
$ 
% & 
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(  space, Θ logn( ) time) 
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Trapezoidal maps (Θ n( )  space, Θ logn( ) expected time) 
 

   
 
Triangular decomposition (used in incremental flip method for Delaunay Triangulation, de Berg Chapter 

9, p. 203) 
 
EUCLIDEAN MINIMUM SPANNING TREES 
 
Voronoi Diagram - post office problem.  Divides plane into convex regions, each containing points 

closest to some given point (blue lines).  (Chapter 7 of M. de Berg et.al.) 
 
Fortune’s Sweep-Line (“beachline”) achieves 

€ 

Θ n logn( )  time 
 
Delaunay Triangulation (has Θ n( )  size, must include EMST edges, Chapter 9 of M. de Berg et.al.) 
 
  Connects vertices for adjacent Voronoi regions (black lines between input points). 
 
  May transform an arbitrary triangulation to a DT in 
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Θ n2# 
$ 
% & 

' 
(  time using flips based on incircle test 

  and the following property: 
 
  Three points are vertices of a Delaunay triangle iff the circle that passes through the three points  
  contains no other input point. 
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Doubly-Connected Edge List - DCEL (AKA Twin/Half-Edge Data Structure, V - E + F = 2). 
 de Berg, section 2.2 
 
 Vertex # Cooordinates Incident Edge# Face # Edge 
 1 0 0 0 1 1 1 
 2 1 0 0 2 2 6 
 3 0 1 0 4 3 10 
 4 0 0 1 8 4 11 
 
 
  Origin    Incident   
 Edge # (Tail) Twin   Face   Next Prev 
 1 1 2  1 3 5 
 2 2 1  3 10 12 
 3 2 4  1 5 1 
 4 3 3  4 11 8 
 
 5 3 6  1 1 3 
 6 1 5  2 7 9 
 7 3 8  2 9 6 
 8 4 7  4 4 11 
 
 9 4 10  2 6 7 
 10 1 9  3 12 2 
 11 2 12  4 8 4 
 12 4 11  3 2 10 
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Aside:  What do - 
 

Determining whether three values in a set of integers add to 0 
Determining whether there are three values from different sets of integers that add to 0 
Determining whether no three points in a set are collinear 
Determining whether no three lines in a set intersect 
Determining the area of overlapping triangles in the plane 

 
have in common?  They are 3SUM-hard . . . 
 
A. Gajentaan and M.H. Overmars, “On a Class of 
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Ο n2# 
$ 
% & 

' 
(  Problems in Computational Geometry”, 

Computational Geometry:  Theory and Applications 5 (1994), 165-185.  
http://www.sciencedirect.com.ezproxy.uta.edu/science/article/pii/0925772195000222 


