CSE 5311 Notes 15: Selected Randomized Algorithms

(Last updated 5/2/16 1:43 PM)

COUPON COLLECTING (KNUTH)

n types of coupon. One coupon per cereal box.

How many boxes of cereal must be bought (expected) to get at least one of each coupon type?

Collecting the *n* coupons is decomposed into *n* steps:

Step 0 = get first coupon

Step 1 = get second coupon

Step m = get m + 1 st coupon

Step n - 1 = get last coupon

Number of boxes for step m

Let p_i = probability of needing *exactly i* boxes (difficult)

$$p_i = \left(\frac{m}{n}\right)^{i-1} \frac{n-m}{n}$$
, so the expected number of boxes for coupon $m+1$ is $\sum_{i=1}^{\infty} ip_i$

Let q_i = probability of needing *at least i* boxes = probability that *previous i* - 1 boxes are failures (much easier to use)

So,
$$p_i = q_i - q_{i+1}$$

$$\sum_{i=1}^{\infty} ip_i = \sum_{i=1}^{\infty} i(q_i - q_{i+1})$$

= $\sum_{i=1}^{\infty} iq_i - \sum_{i=1}^{\infty} iq_{i+1}$
= $\sum_{i=1}^{\infty} iq_i - \sum_{i=2}^{\infty} (i-1)q_i$
= $q_1 + \sum_{i=2}^{\infty} iq_i - \sum_{i=2}^{\infty} iq_i + \sum_{i=2}^{\infty} q_i$
= $\sum_{i=1}^{\infty} q_i$

$$q_{1} = 1$$

$$q_{2} = \frac{m}{n}$$

$$q_{3} = \left(\frac{m}{n}\right)^{2}$$

$$q_{k} = \left(\frac{m}{n}\right)^{k-1}$$

$$\sum_{i=1}^{\infty} q_{i} = \sum_{i=0}^{\infty} \left(\frac{m}{n}\right)^{i} = \frac{1}{1-\frac{m}{n}} = \frac{n}{n-m} = \text{Expected number of boxes for coupon } m + 1$$

Summing over all steps gives

$$\sum_{i=0}^{n-1} \frac{n}{n-i} = n \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) \le n \left(\ln n + 1 \right)$$

GENERATING RANDOM PERMUTATIONS

PERMUTE-BY-SORTING (p. 125, skim)

Generates randoms in $1 \dots n^3$ and then sorts to get permutation in $\Theta(n \log n)$ time.

Can use radix/counting sort (CSE 2320 Notes 8) to perform in $\Theta(n)$ time.

RANDOMIZE-IN-PLACE

Array A must initially contain a permutation. Could simply be identity permutation: A[i] = i.

```
for i=1 to n
swap A[i] and A[RANDOM(i,n)]
```

Code is equivalent to reaching in a bag and choosing a number to "lock" into each slot.

Uniform - all *n*! permutations are equally likely to occur.

Problem 5.3-3 PERMUTE-WITH-ALL

```
for i=1 to n
swap A[i] and A[RANDOM(1,n)]
```

Produces n^n outcomes, but n! does not divide into n^n evenly.

: Not uniform - some permutations are produced more often than others.

Assume n=3 and A initially contains identity permutation. RANDOM choices that give each permutation.

1	2	3:	1	2	3	1	3	2	2	1	3	3	2	1			
1	3	2:	1	2	2	1	3	3	2	1	2	2	3	1	3	1	1
2	1	3:	1	1	3	2	2	3	2	3	2	3	1	2	3	3	1
2	3	1:	1	1	2	1	3	1	2	2	2	2	3	3	3	1	3
3	1	2:	1	1	1	2	2	1	3	2	2	3	3	3			
3	2	1:	1	2	1	2	1	1	3	2	3	3	3	2			

Asides:

List Ranking - Shared Memory and Distributed Versions (http://ranger.uta.edu/~weems/NOTES4351/09notes.pdf)

Ethernet: http://en.wikipedia.org/wiki/Exponential_backoff

Valiant-Brebner permutation routing

TREAPS (CLRS, p. 333)

Hybrid of BST and min-heap ideas

Gives code that is clearer than RB or AVL (but comparable to skip lists)

Expected height of tree is logarithmic $(2.5 \lg n)$

Keys are used as in BST

Tree also has min-heap property based on each node having a priority:

Randomized priority - generated when a new key is inserted

Virtual priority - computed (when needed) using a function similar to a hash function

Asides: the first published such hybrid were the *cartesian trees* of J. Vuillemin, "A Unifying Look at Data Structures", *C. ACM 23 (4)*, April 1980, 229-239. A more complete explanation appears in E.M. McCreight, "Priority Search Trees", *SIAM J. Computing 14 (2)*, May 1985, 257-276 and chapter 10 of M. de Berg et.al. These are also used in the elegant implementation in M.A. Babenko and T.A. Starikovskaya, "Computing Longest Common Substrings" in E.A. Hirsch, *Computer Science - Theory and Applications*, LNCS 5010, 2008, 64-75.

Insertion

Insert as leaf

Generate random priority (large range to minimize duplicates)

Single rotations to fix min-heap property

Example: Insert 16 with a priority of 2

After rotations:

Deletion

Find node and change priority to ∞

Rotate to bring up child with lower priority. Continue until min-heap property holds.

Remove leaf.

Delete key 2:

BLOOM FILTERS (not in book)

http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=362686.362692

```
http://en.wikipedia.org/wiki/Bloom_filter
```

M. Mitzenmacher and E. Upfal, *Probability and Computing: Randomized Algorithms and Probabilistic Analysis*, Cambridge Univ. Press, 2005.

m bit array used as filter to avoid accessing slow external data structure for misses

k independent hash functions for the m bit array

Static set of *n* elements to be represented in filter, but not explicitly stored:

```
for (i=0; i<m; i++)
   bloom[i]=0;
for (i=0; i<n; i++)
   for (j=0; j<k; j++)
      bloom[(*hash[j])(element[i])]=1;</pre>
```

Testing if candidate element is possibly in the set of *n*:

```
for (j=0; j<k; j++)
{
    if (!bloom[(*hash[j])(candidate)])
        <Can't be in the set>
}
<Possibly in set>
```

The relationship among m, n, and k determines the *false positive* probability p.

Given *m* and *n*, the *optimal* number of functions is $k = \frac{m}{n} \ln 2$ to minimize $p = \left(\frac{1}{2}\right)^k$.

More realistically, *m* may be determined for a desired *n* and *p*: $m = -\frac{n \ln p}{(\ln 2)^2}$ (and $k = \lg \frac{1}{p}$).

What interesting property can be expected for an optimally "configured" Bloom filter?

(*m* coupon types, *nk* cereal boxes . . . how many 0's and 1's in bit array?)

8.A. QUICKSORT

Sedgewick 7.1-7.8

Concepts

Idea: Take an unsorted (sub)array and *partition* into two subarrays such that

Customarily, the last subarray element (subscript r) is used as the *pivot* value.

After partitioning, each of the two subarrays, $p \dots q - 1$ and $q + 1 \dots r$, are sorted recursively.

Subscript q is returned from PARTITION (aside: some versions don't place pivot in its final position).

Like MERGESORT, QUICKSORT is a divide-and-conquer technique:

	MERGESORT	QUICKSORT
Divide	Trivial	PARTITION (in-place)
Subproblems	Sort Two Parts	Sort Two Parts
Combine	Merge (not in-place)	Trivial
Bottom-up possible?	Yes	No

http://ranger.uta.edu/~weems/NOTES2320/qsortRS.c

Version 1 (not in Sedgewick): PARTITION (in $\Theta(n)$ time, see http://ranger.uta.edu/~weems/NOTES2320/partition.c)

A and B can be at the the same position . . .

Termination

Swap # & y to place y in its final position.

```
int newPartition(int arr[],int p,int r)
// From CLRS, 2nd ed.
{
int x,i,j,temp;
x=arr[r];
i=p-1;
for (j=p;j<r;j++)</pre>
  if (arr[j]<=x)</pre>
  {
    i++;
    temp=arr[i];
    arr[i]=arr[j];
    arr[j]=temp;
  }
temp=arr[i+1];
arr[i+1]=arr[r];
arr[r]=temp;
return i+1;
}
```

Example:

AB	6		3		7		2			8		4		9		0		1		5
А	6	В	3		7		2			8		4		9		0		1		5
	3	А	6	В	7		2			8		4		9		0		1		5
	3	А	6		7	В	2			8		4		9		0		1		5
	3		2	А	7		6	I	В	8		4		9		0		1		5
	3		2	А	7		6			8	в	4		9		0		1		5
	3		2		4	А	6			8		7	В	9		0		1		5
	3		2		4	А	6			8		7		9	В	0		1		5
	3		2		4		0	А		8		7		9		6	в	1		5
	3		2		4		0			1	А	7		9		6		8	В	5
	3		2		4		0			1	<	5	>	9		6		8		7

Version 2 (Sedgewick): Pointers move toward each other (also in $\Theta(n)$ time, see http://ranger.uta.edu/~weems/NOTES2320/partitionRS.c)

Termination

Swap # & y to place y in its final position.

```
int partition(Item *a,int ell,int r)
// From Sedgewick, but more complicated since pointers move
// towards each other.
// Elements before i are <= pivot.</pre>
// Elements after j are >= pivot.
int i = ell-1, j = r; Item v = a[r];
printf("Input\n");
dump(arr,ell,r);
for (;;)
  {
    // Since pivot is the right end, this while has a sentinel.
    // Stops at any element >= pivot
    while (less(a[++i], v));
    // Stops at any element <= pivot (but not the pivot) or at the left end
    while (less(v, a[--j])) if (j == ell) break;
    if (i >= j) break; // Don't need to swap
    exch(a[i], a[j]);
  }
                   // Place pivot at final position for sort
exch(a[i], a[r]);
return i;
}
```

Examples:

А	6	3	3	7		2		8		4		9		0		1		5	B Left positioned
А	6	3	3	7		2		8		4		9		0		1	В	5	Right positioned
А	1	3	3	7		2		8		4		9		0		6	в	5	After swap
	1 A		3	7		2		8		4		9		0		6	в	5	Left continues
	1	3	3 A	7		2		8		4		9		0		6	в	5	Left positioned
	1	3	3 A	7		2		8		4		9		0	В	6		5	Right positioned
	1	3	3 A	0		2		8		4		9		7	В	6		5	After swap
	1	3	3	0	А	2		8		4		9		7	В	6		5	Left continues
	1	3	3	0		2	А	8		4		9		7	В	6		5	Left positioned
	1	3	3	0		2	А	8		4		9	В	7		6		5	Right continues
	1	3	3	0		2	А	8		4	в	9		7		6		5	Right positioned
	1	3	3	0		2	А	4		8	в	9		7		6		5	After swap
	1	3	3	0		2		4	A	8	в	9		7		6		5	Left positioned
	1	3	3	0		2		4	AB	8		9		7		6		5	Pointers collided
	1	3	3	0		2		4	<	5>		9		7		6		8	Pivot positioned
А	9	8	3	7		6		5		1		2		3		4		5	B Left positioned
А	9	8	3	7		6		5		1		2		3		4	в	5	Right positioned
А	4	8	3	7		6		5		1		2		3		9	в	5	After swap
	4 A		3	7		6		5		1		2		3		9	в	5	Left positioned
	4 A	. 8	3	7		6		5		1		2		3	В	9		5	Right positioned
	4 A		3	7		6		5		1		2		8	В	9		5	After swap
	4	3	3 A	7		6		5		1		2		8	В	9		5	Left positioned
	4	3	3 A	7		6		5		1		2	В	8		9		5	Right positioned
	4	3	3 A	2		6		5		1		7	В	8		9		5	After swap
	4	3	3	2	А	6		5		1		7	В	8		9		5	Left positioned
	4	3	3	2	А	6		5		1	в	7		8		9		5	Right positioned
	4	3	3	2	А	1		5		6	в	7		8		9		5	After swap
		-	2	2		1	λ	5		6	в	7		8		9		5	Left positioned
	4		,	Z		Т	А	_						-					Lere pobreronea
	4 4		3	2		1	A	<u>5</u>	В	6		7		8		9		5	Pointers collided

QUICKSORT Analysis

Worst Case – Pivot is smallest or largest key in subarray *every time*. (Includes ascending or descending order.) Let T(n) be the number of comparisons.

$$T(n) = T(n-1) + n - 1 = \sum_{i=1}^{n-1} i = \Theta(n^2)$$

Best Case – Pivot ("median") always ends up in the middle. $T(n) = 2T(\frac{n}{2}) + n - 1$ (Similar to mergesort.)

Expected Case – Assume all *n*! permutations are equally likely to occur. Likewise, each element is equally likely to occur as the pivot (each of the *n* elements will be the pivot in (n-1)! cases). E(n) is the expected number of comparisons. E(0) = 0.

$$E(n) = n - 1 + \sum_{i=0}^{n-1} \frac{1}{n} \left(E(i) + E(n - 1 - i) \right) = n - 1 + \frac{2}{n} \sum_{i=1}^{n-1} E(i)$$

Show $O(n \log n)$. Suppose $E(i) \le ci \ln i$ for i < n.

$$E(n) \le n - 1 + \frac{2c}{n} \sum_{i=1}^{n-1} \ln i \le n - 1 + \frac{2c}{n} \int_{1}^{n} x \ln x \, dx \quad \text{[Bound above by integral]}$$
$$= n - 1 + \frac{2c}{n} \left[\frac{1}{2} x^2 \ln x - \frac{x^2}{4} \right]_{1}^{n} \qquad \text{[From http://integrals.wolfram.com]}$$
$$= n - 1 + \frac{2c}{n} \left(\frac{n^2}{2} \ln n - \frac{n^2}{4} + \frac{1}{4} \right) = n - 1 + cn \ln n - \frac{cn}{2} + \frac{c}{2n}$$
$$\le cn \ln n \text{ for } c \ge 2$$

Other issues: (Sedgewick 7.3-7.5)

Unbalanced partitioning also leads to worst-case *stack depth* in $\Theta(n)$.

Small subfiles - use simpler sort on each subfile or delay until quicksort finishes.

Pivot selection - random, median-of-three

Subfile with all keys equal for version 1 and 2 partitioning?

8.B. SELECTION AND RANKING USING QUICKSORT PARTITIONING IDEAS

Sedgewick 7.8

Finding kth largest (or smallest) element in unordered table of n elements

(Aside: If k is small, e.g. $O\left(\frac{n}{\log n}\right)$, use a heap.)

Sort everything?

Use PARTITION several times. Always throw away the subarray that cannot include the target.

http://ranger.uta.edu/~weems/NOTES2320/selection.c

 $\Theta(n^2)$ worst case (e.g. input ordered)

 $\Theta(n)$ expected. Let E(k,n) represent the expected number of comparisons to find the *k*th largest in a set of *n* numbers. (Assume all *n*! permutations are equally likely.)

Suppose n = 7 and k = 3. After 6 comparisons to place a pivot, the 7 possible pivot positions require different numbers of additional comparisons:

Suppose n = 8 and k = 6. After 7 comparisons to place a pivot, the 8 possible pivot positions require different numbers of additional comparisons:

Observation: Finding the median is slightly more difficult than all other cases.

$$E(k,n) = n - 1 + \frac{1}{n} \sum_{i=1}^{k-1} E(i,n-k+i) + \frac{1}{n} \sum_{i=k}^{n-1} E(k,i)$$

Show O(n). Using substitution method, suppose $E(i, j) \le cj$ for j < n.

$$\begin{split} E(k,n) &\leq n-1 + \frac{1}{n} \sum_{i=1}^{k-1} c(n-k+i) + \frac{1}{n} \sum_{i=k}^{n-1} ci \\ &= n-1 + \frac{c}{n} \sum_{i=1}^{k-1} (n-k+i) + \frac{c}{n} \sum_{i=k}^{n-1} i \\ &= n-1 + \frac{c}{n} \sum_{i=1}^{k-1} (n-k) + \frac{c}{n} \sum_{i=1}^{n-1} i + \frac{c}{n} \sum_{i=k}^{n-1} i \\ &= n-1 + \frac{c}{n} (k-1)(n-k) + \frac{c}{n} \sum_{i=1}^{n-1} i = n-1 + \frac{c}{n} (k-1)(n-k) + \frac{c}{n} \frac{(n-1)n}{2} \\ &\leq n-1 + \frac{c}{n} \left(\frac{n^2}{4} - \frac{n}{2} + \frac{1}{4} \right) + \frac{c}{2} (n-1) \qquad k = \frac{n+1}{2} \text{ maximizes } \frac{c}{n} (k-1)(n-k) \\ &= n-1 + \frac{cn}{4} - \frac{c}{2} + \frac{c}{4n} + \frac{cn}{2} - \frac{c}{2} = n-1 + \frac{3cn}{4} - c + \frac{c}{4n} = cn - \frac{cn}{4} + n - 1 + \frac{c}{4n} - c \\ &\leq cn \text{ for } c \geq 4 \end{split}$$