
CSE 5311 Notes 15: Selected Randomized Algorithms

(Last updated 5/2/16 1:43 PM)

COUPON COLLECTING (KNUTH)

 n types of coupon. One coupon per cereal box.

 How many boxes of cereal must be bought (expected) to get at least one of each coupon type?

 Collecting the n coupons is decomposed into n steps:

 Step 0 = get first coupon

 Step 1 = get second coupon

 Step m = get m+1st coupon

 Step n - 1 = get last coupon

 Number of boxes for step m

 Let

€

pi = probability of needing exactly i boxes (difficult)

€

pi = m
n()i−1 n−mn , so the expected number of boxes for coupon m + 1 is

€

ipi
i=1

∞
∑

 Let

€

qi = probability of needing at least i boxes = probability that previous i - 1 boxes are failures
 (much easier to use)

 So,

€

pi = qi − qi+1

€

ipi
i=1

∞
∑ = i qi − qi+1()

i=1

∞
∑

= iqi
i=1

∞
∑ − iqi+1

i=1

∞
∑

= iqi
i=1

∞
∑ − i −1()qi

i=2

∞
∑

= q1 + iqi
i=2

∞
∑ − iqi

i=2

∞
∑ + qi

i=2

∞
∑

= qi
i=1

∞
∑

 2

€

q1 =1

q2 = m
n

q3 = m
n()2

qk = m
n()k−1

qi
i=1

∞
∑ = m

n()i
i=0

∞
∑ = 1

1−mn
= n
n−m = Expected number of boxes for coupon m + 1

 Summing over all steps gives

€

n
n−ii=0

n−1
∑ = n 1+ 12 + 13 + ...+ 1n() ≤ n lnn +1()

GENERATING RANDOM PERMUTATIONS

PERMUTE-BY-SORTING (p. 125, skim)

 Generates randoms in 1 . . . n3 and then sorts to get permutation in Θ(n log n) time.

 Can use radix/counting sort (CSE 2320 Notes 8) to perform in Θ(n) time.

RANDOMIZE-IN-PLACE

 Array A must initially contain a permutation. Could simply be identity permutation: A[i] = i.

 for i=1 to n
 swap A[i] and A[RANDOM(i,n)]

 Code is equivalent to reaching in a bag and choosing a number to “lock” into each slot.

 Uniform - all n! permutations are equally likely to occur.

Problem 5.3-3 PERMUTE-WITH-ALL

 for i=1 to n
 swap A[i] and A[RANDOM(1,n)]

 Produces

€

nn outcomes, but

€

n! does not divide into

€

nn evenly.

 ∴ Not uniform - some permutations are produced more often than others.

 3
 Assume n=3 and A initially contains identity permutation. RANDOM choices that give each

permutation.

1 2 3: 1 2 3 1 3 2 2 1 3 3 2 1
1 3 2: 1 2 2 1 3 3 2 1 2 2 3 1 3 1 1
2 1 3: 1 1 3 2 2 3 2 3 2 3 1 2 3 3 1
2 3 1: 1 1 2 1 3 1 2 2 2 2 3 3 3 1 3
3 1 2: 1 1 1 2 2 1 3 2 2 3 3 3
3 2 1: 1 2 1 2 1 1 3 2 3 3 3 2

Asides:

 List Ranking - Shared Memory and Distributed Versions

(http://ranger.uta.edu/~weems/NOTES4351/09notes.pdf)

 Ethernet: http://en.wikipedia.org/wiki/Exponential_backoff

 Valiant-Brebner permutation routing

TREAPS (CLRS, p. 333)

Hybrid of BST and min-heap ideas

Gives code that is clearer than RB or AVL (but comparable to skip lists)

Expected height of tree is logarithmic (2.5 lg n)

 Keys are used as in BST

 Tree also has min-heap property based on each node having a priority:

 Randomized priority - generated when a new key is inserted

 Virtual priority - computed (when needed) using a function similar to a hash function

10
4

19
3

12
13

18
14

15
22

23
15

27
5

31
16

34
1

38
17

41
6

53
21

57
50

62
2

65
12

67
20

71
7

75
18

77
8

82
9

88
11

 4
 Asides: the first published such hybrid were the cartesian trees of J. Vuillemin, “A Unifying Look

at Data Structures”, C. ACM 23 (4), April 1980, 229-239. A more complete explanation appears in
E.M. McCreight, “Priority Search Trees”, SIAM J. Computing 14 (2), May 1985, 257-276 and
chapter 10 of M. de Berg et.al. These are also used in the elegant implementation in M.A. Babenko
and T.A. Starikovskaya, “Computing Longest Common Substrings” in E.A. Hirsch, Computer
Science - Theory and Applications, LNCS 5010, 2008, 64-75.

Insertion

 Insert as leaf

 Generate random priority (large range to minimize duplicates)

 Single rotations to fix min-heap property

Example: Insert 16 with a priority of 2

10
4

19
3

12
13

18
14

15
22

23
15

27
5

31
16

34
1

38
17

41
6

53
21

57
50

62
2

65
12

67
20

71
7

75
18

77
8

82
9

88
11

16
2

After rotations:

10
4

19
3

12
13

18
14

15
22

23
15

27
5

31
16

34
1

38
17

41
6

53
21

57
50

62
2

65
12

67
20

71
7

75
18

77
8

82
9

88
11

16
2

 5
Deletion

 Find node and change priority to ∞

 Rotate to bring up child with lower priority. Continue until min-heap property holds.

 Remove leaf.

Delete key 2:

2
1

1
2

4
3

3
4

5
5

2
∞

1
2

4
3

3
4

5
5

1
2

2
∞

4
3

3
4

5
5

1
2

4
3

2
∞

3
4

5
5

1
2

4
3

2
∞

3
4

5
5

1
2

4
3

3
4

5
5

BLOOM FILTERS (not in book)

http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=362686.362692

http://en.wikipedia.org/wiki/Bloom_filter

M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic
Analysis, Cambridge Univ. Press, 2005.

m bit array used as filter to avoid accessing slow external data structure for misses

k independent hash functions for the m bit array

Static set of n elements to be represented in filter, but not explicitly stored:

for (i=0; i<m; i++)
 bloom[i]=0;
for (i=0; i<n; i++)
 for (j=0; j<k; j++)
 bloom[(*hash[j])(element[i])]=1;

 6
Testing if candidate element is possibly in the set of n:

for (j=0; j<k; j++)
{
 if (!bloom[(*hash[j])(candidate)])
 <Can’t be in the set>
}
<Possibly in set>

The relationship among m, n, and k determines the false positive probability p.

Given m and n, the optimal number of functions is

€

k = m
n ln2 to minimize

€

p = 1
2()k .

More realistically, m may be determined for a desired n and p:

€

m = − n ln p
ln2()2

 (and

€

k = lg 1p).

What interesting property can be expected for an optimally “configured” Bloom filter?

 (m coupon types, nk cereal boxes . . . how many 0’s and 1’s in bit array?)

8.A. QUICKSORT

Sedgewick 7.1-7.8

Concepts

 Idea: Take an unsorted (sub)array and partition into two subarrays such that

yx z
p q r

x ≤ y y ≤ z

Pivot

 Customarily, the last subarray element (subscript r) is used as the pivot value.

 After partitioning, each of the two subarrays, p . . . q – 1 and q + 1 . . . r, are sorted recursively.

Subscript q is returned from PARTITION (aside: some versions don’t place pivot in its final
position).

 7
 Like MERGESORT, QUICKSORT is a divide-and-conquer technique:

 MERGESORT QUICKSORT

Divide Trivial PARTITION
 (in-place)

Subproblems Sort Two Parts Sort Two Parts

Combine MERGE Trivial
 (not in-place)

Bottom-up Yes No
possible?

http://ranger.uta.edu/~weems/NOTES2320/qsortRS.c

Version 1 (not in Sedgewick): PARTITION (in

€

Θ n() time, see
http://ranger.uta.edu/~weems/NOTES2320/partition.c)

yx z

Pivot

A B

*#

1 2 3

1

2

3

Already known to have x ≤ y

Already known to have y < z

Untouched

y < *: Move B over

* ≤ y: Swap # & *
 Move B over
 Move A over

 A and B can be at the the same position . . .

Termination

y

A B

#

Swap # & y to place y in its final position.

 8
int newPartition(int arr[],int p,int r)
// From CLRS, 2nd ed.
{
int x,i,j,temp;

x=arr[r];
i=p-1;
for (j=p;j<r;j++)
 if (arr[j]<=x)
 {
 i++;
 temp=arr[i];
 arr[i]=arr[j];
 arr[j]=temp;
 }
temp=arr[i+1];
arr[i+1]=arr[r];
arr[r]=temp;
return i+1;
}

Example:

AB 6 3 7 2 8 4 9 0 1 5

A 6 B 3 7 2 8 4 9 0 1 5

 3 A 6 B 7 2 8 4 9 0 1 5

 3 A 6 7 B 2 8 4 9 0 1 5

 3 2 A 7 6 B 8 4 9 0 1 5

 3 2 A 7 6 8 B 4 9 0 1 5

 3 2 4 A 6 8 7 B 9 0 1 5

 3 2 4 A 6 8 7 9 B 0 1 5

 3 2 4 0 A 8 7 9 6 B 1 5

 3 2 4 0 1 A 7 9 6 8 B 5

 3 2 4 0 1 < 5 > 9 6 8 7

Version 2 (Sedgewick): Pointers move toward each other (also in

€

Θ n() time, see
http://ranger.uta.edu/~weems/NOTES2320/partitionRS.c)

 9

yx z

Pivot

A B

*#

1 2 3

1

2

3

Already known to have x ≤ y

Already known to have y ≤ z

Untouched

< y: Move A right

y < *: Move B left

a

b

c Swap # and * (unless A and B have collided)

Termination

y

A
B

#

Swap # & y to place y in its final position.

*

int partition(Item *a,int ell,int r)
{
// From Sedgewick, but more complicated since pointers move
// towards each other.
// Elements before i are <= pivot.
// Elements after j are >= pivot.
int i = ell-1, j = r; Item v = a[r];

printf("Input\n");
dump(arr,ell,r);

for (;;)
 {
 // Since pivot is the right end, this while has a sentinel.
 // Stops at any element >= pivot
 while (less(a[++i], v)) ;
 // Stops at any element <= pivot (but not the pivot) or at the left end
 while (less(v, a[--j])) if (j == ell) break;
 if (i >= j) break; // Don't need to swap
 exch(a[i], a[j]);
 }
exch(a[i], a[r]); // Place pivot at final position for sort
return i;
}

 10
Examples:

A 6 3 7 2 8 4 9 0 1 5 B Left positioned

A 6 3 7 2 8 4 9 0 1 B 5 Right positioned

A 1 3 7 2 8 4 9 0 6 B 5 After swap

 1 A 3 7 2 8 4 9 0 6 B 5 Left continues

 1 3 A 7 2 8 4 9 0 6 B 5 Left positioned

 1 3 A 7 2 8 4 9 0 B 6 5 Right positioned

 1 3 A 0 2 8 4 9 7 B 6 5 After swap

 1 3 0 A 2 8 4 9 7 B 6 5 Left continues

 1 3 0 2 A 8 4 9 7 B 6 5 Left positioned

 1 3 0 2 A 8 4 9 B 7 6 5 Right continues

 1 3 0 2 A 8 4 B 9 7 6 5 Right positioned

 1 3 0 2 A 4 8 B 9 7 6 5 After swap

 1 3 0 2 4 A 8 B 9 7 6 5 Left positioned

 1 3 0 2 4 AB 8 9 7 6 5 Pointers collided

 1 3 0 2 4 < 5> 9 7 6 8 Pivot positioned

A 9 8 7 6 5 1 2 3 4 5 B Left positioned

A 9 8 7 6 5 1 2 3 4 B 5 Right positioned

A 4 8 7 6 5 1 2 3 9 B 5 After swap

 4 A 8 7 6 5 1 2 3 9 B 5 Left positioned

 4 A 8 7 6 5 1 2 3 B 9 5 Right positioned

 4 A 3 7 6 5 1 2 8 B 9 5 After swap

 4 3 A 7 6 5 1 2 8 B 9 5 Left positioned

 4 3 A 7 6 5 1 2 B 8 9 5 Right positioned

 4 3 A 2 6 5 1 7 B 8 9 5 After swap

 4 3 2 A 6 5 1 7 B 8 9 5 Left positioned

 4 3 2 A 6 5 1 B 7 8 9 5 Right positioned

 4 3 2 A 1 5 6 B 7 8 9 5 After swap

 4 3 2 1 A 5 6 B 7 8 9 5 Left positioned

 4 3 2 1 A 5 B 6 7 8 9 5 Pointers collided

 4 3 2 1 < 5> 6 7 8 9 5 Pivot positioned

QUICKSORT Analysis

Worst Case – Pivot is smallest or largest key in subarray every time. (Includes ascending or descending
order.) Let

€

T n() be the number of comparisons.

€

T n() = T n −1() + n −1= i
i=1

n−1
∑ =Θ n2⎛

⎝
⎜ ⎞

⎠
⎟

 11

Best Case – Pivot (“median”) always ends up in the middle.

€

T n() = 2T n
2() + n −1 (Similar to mergesort.)

Expected Case – Assume all

€

n! permutations are equally likely to occur. Likewise, each element is
equally likely to occur as the pivot (each of the n elements will be the pivot in

€

n −1()! cases).

€

E n() is
the expected number of comparisons.

€

E 0() = 0.

€

E n() = n −1+ 1
ni=0

n−1
∑ E i() + E n −1− i()() = n −1+ 2

n E i()
i=1

n−1
∑

Show Ο n logn(). Suppose E i() ≤ ci lni for i < n.

€

E n() ≤ n −1+ 2c
n i lni
i=1

n−1
∑ ≤ n -1 + 2c

n x ln xdx
1

n
∫ [Bound above by integral]

 = n −1+ 2c
n

1

n
1
2 x

2 ln x− x
2

4
⎡

⎣
⎢

⎤

⎦
⎥ [From http : //integrals.wolfram.com]

 = n −1+ 2c
n

n2
2 lnn − n

2
4 + 1

4
⎛

⎝
⎜

⎞

⎠
⎟ = n −1+ cn lnn − cn2 + c

2n

 ≤ cn lnn for c ≥ 2

Other issues: (Sedgewick 7.3-7.5)

 Unbalanced partitioning also leads to worst-case stack depth in

€

Θ n() .

 Small subfiles - use simpler sort on each subfile or delay until quicksort finishes.

 Pivot selection - random, median-of-three

 Subfile with all keys equal for version 1 and 2 partitioning?

8.B. SELECTION AND RANKING USING QUICKSORT PARTITIONING IDEAS

Sedgewick 7.8

Finding kth largest (or smallest) element in unordered table of n elements

 (Aside: If k is small, e.g.

€

Ο n
logn
⎛
⎝
⎜

⎞
⎠
⎟ , use a heap.)

 Sort everything?

 12
 Use PARTITION several times. Always throw away the subarray that cannot include the target.

 http://ranger.uta.edu/~weems/NOTES2320/selection.c

€

Θ n2⎛
⎝
⎜ ⎞

⎠
⎟ worst case (e.g. input ordered)

€

Θ n() expected. Let

€

E k,n() represent the expected number of comparisons to find the
kth largest in a set of n numbers. (Assume all

€

n! permutations are equally likely.)

Suppose

€

n = 7 and

€

k = 3. After 6 comparisons to place a pivot, the 7 possible pivot
positions require different numbers of additional comparisons:

 1

€

E 3,6()
 2

€

E 3,5()
 3

€

E 3,4()
 4

€

E 3,3()
 5 0
 6

€

E 1,5()
 7

€

E 2,6()

Suppose

€

n = 8 and

€

k = 6. After 7 comparisons to place a pivot, the 8 possible pivot
positions require different numbers of additional comparisons:

 1

€

E 6,7()
 2

€

E 6,6()
 3 0
 4

€

E 1,3()
 5

€

E 2,4()
 6

€

E 3,5()
 7

€

E 4,6()
 8

€

E 5,7()

 Observation: Finding the median is slightly more difficult than all other cases.

€

E k,n() = n −1+ 1n E i,n − k + i()
i=1

k−1
∑ + 1n E k,i()

i=k

n−1
∑

 13

€

Show Ο(n). Using substitution method, suppose E i, j() ≤ cj for j < n.

E k,n() ≤ n −1+ 1
n c n − k + i() +

i=1

k−1
∑ 1

n ci
i=k

n−1
∑

 = n −1+ c
n n − k + i() +

i=1

k−1
∑ c

n i
i=k

n−1
∑

 = n −1+ c
n n − k() + c

n i
i=1

k−1
∑ +

i=1

k−1
∑ c

n i
i=k

n−1
∑

 = n −1+ c
n k −1() n − k() + c

n i
i=1

n−1
∑ = n −1+ c

n k −1() n − k() + c
n
n−1()n

2

 ≤ n −1+ c
n
n2
4 − n2 + 1

4
⎛

⎝
⎜

⎞

⎠
⎟ + c

2 n −1() k = n+1
2 maximizes cn k −1() n − k()

 = n −1+ cn
4 − c2 + c

4n + cn
2 − c2 = n −1+ 3cn

4 − c + c
4n = cn − cn4 + n −1+ c

4n − c

 ≤ cn for c ≥ 4

