CSE 5311-006: ADVANCED ALGORITHMS

Spring 2016: TR 5:30 - 6:50 p.m., Pickard Hall 110

Instructor: Office: Hours:	Bob Weems, Associate Professor 627 ERB (weems@uta.edu,http://ranger.uta.edu/~weems) TR 1:00 - 3:00 p.m.					
GTA:	Amirhossein Herandi (amirhossein.herandi@mavs.uta.edu)					
Textbook:	Cormen, Leiserson, Rivest, Stein, Introduction to Algorithms, 3rd ed., MIT Press, 2009. (Henceforth known as CLRS)					
References:	M. de Berg et.al., Computational Geometry: Algorithms and Applications, 3rd ed., Springer-Verlag, 2010. http://dx.doi.org.ezproxy.uta.edu/10.1007/978-3-540-77974-2					
	A. Borodin and R. El-Yaniv, <i>Online Computation and Competitive Analysis</i> , Cambridge Univ. Press, 1998.					
	L. Fortnow, <i>The Golden Ticket: P, NP, and the Search for the Impossible</i> , Princeton Univ. Press, 2013.					
	M.R. Garey and D.S. Johnson, <i>Computers and Intractability: A Guide to the Theory of NP-Completeness</i> , Freeman, 1979.					
	D.S. Hochbaum, ed., Approximation Algorithms for NP-Hard Problems, PWS, 1997.					
	R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press, 1995.					
	J. O'Rourke, Computational Geometry in C, 2nd ed., Cambridge Univ. Press, 1998.					
	C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.					
Grade: Your grade will be based on the following weights:						

 Exams:
 45% (Test 1: 20%; Test 2: 25%, Tuesday, May 10, 5:30 - 8:00 p.m)

 Quizzes:
 40% (8% x 5)

 Project:
 15%

Policies:

3. Homeworks, with solutions, are available from the web page.

Course Outline

Starred (*) topics are not in CLRS

11. Intractability (34, 35)
Sample Intractable Problems
Complexity Classes
Reductions
Polynomial-Time Approximation
13. Computational Geometry (33)
Fundamental Predicates
Closest Pairs
Convex Hulls
Sweepline Algorithms
Plane Partitions and Point Location
Euclidean MST/Voronoi Diagram/Delaunay Triangulation
Material on Randomized Algorithms will be taken from these notes:
1. Mathematical Preliminaries
Probability and Randomized Algorithms (5)
2. Binary Search Trees
Treaps (problem 13-4)
Self-Organizing Linear Search (Computing Surveys*, problem 17-5)???
Self-Adjusting Binary Search Trees (Splay trees/amortized analysis) (JACM)*???
5. Hashing
Bloom Filters*
6. Medians/Selection (9.3)
Quicksort analysis from 2320 Notes 8

Calendar - with subject numbers from course content

April

May

				3	13. / Rand. Algs.	5	Rand. Algs.
		14	11.	10	Exam 2 (earlier topics' question	ns fro	om Mehrab)
19	11.	21	11.				
26	13.	28	Closed-Book Qu	iz on	NP-Completeness		