X. Karl					
CSE 5311 Test 1 - Closed Book Spring 2017 Name Last name, then first name as on your UTA ID card					
Spring 2017					
Multiple Choice:					
 Write the letter of your answer on the line () to the LEFT of each problem. CIRCLED ANSWERS DO NOT COUNT. 2 points each 					
1. To support computing the number of keys that are smaller than a query key, an augmented binary search tree stores the following at every node:					
A. the count of the number of keys in the entire tree B. the sum of all keys in the left subtree the count of the number of keys stored in the subtree rooted by this node					
D. the sum of all keys stored in the subtree rooted by this node					
2. Which of the following is not true regarding the amortized analysis of binary tree traversals?					
A. Init had an amortized cost of 0. B. Succ had an actual cost determined by the number of edges followed. Succ had an amortized cost of 1. D. The potential was defined with regard to the type of traversal being performed.					
3. Suppose you already have 15 different coupons when there are 20 coupon types. What is the expected number of boxes for obtaining a coupon different from the 15 you already have?					
A. 2 B. 3 £4 D. 5					
4. When is path compression used?					
A. After an insertion into a splay tree. B. With a FIND operation.					
C. After an insertion into any type of balanced binary search tree. D. With a Union operation.					
5. When performing selection in worst-cast linear time for <i>n</i> numbers, roughly how many column medians are computed in the first round?					
$\frac{n}{5}$ B. m, the median-of-medians C. 0.7n D. $W(\frac{n}{5})$					
6. If a Fibonacci tree appears as a subtree of an AVL tree, which nodes would be assigned a balance factor of +2?					
A. none of them C. only the root D. the leaves and the root					

7. How many inversions are there for the lists 1, 2, 5, 4, 3 and 2, 5, 4, 3, 1?						
	A. 2 B. 3	E . 4	D. 5			
8. Which pri	ority queue is define	d using the notion of n	ull path length?			
MA	★. Leftist heap	B. Binomial heap	C. Pairing heap	D. Binary heap		
9. Pairing he	eaps are a practical al	ternative to:				
	A. binary heaps	B. binomial heaps	🗲 Fibonacci heaps	D. leftist heaps		
10. Which pro	operty does not hold	for binomial heaps?				
A. The number of trees is based on the binary representation of the number of stored items. B. DECREASE-KEY takes O(log n) time. MINIMUM takes O(1) time. D. Performing n INSERT operations into an empty heap will take O(n) time.						
11. In the wor	st case, the number of	of rotations for inserting	g a key in a treap with n	keys is:		
A. θ(r	$n \log n$ B. θ	(1) C. $\theta(\log n)$	$\Theta(n)$			
12. Assuming a random <i>n</i> -permutation is provided, the expected number of hires for the hiring problem is:						
A = H	в. 2 С. л	\sqrt{n} D. $\ln \ln n$				
13. What is minimized in the dynamic programming solution to the subset sum problem?						
A. The number of input values used to sum to each $C(i)$ B. S_j						
<u>C</u> The	e index stored for eac	th $C(i)$	D. <i>m</i>			
A CONTRACTOR OF THE CONTRACTOR		=	orming deletion on an A			
<u>Α</u> . Θ($n)$ B. $\Theta(1)$	$\mathcal{L} \Theta(\log n)$ D. N	o rotations are ever use	d		
			cs of what other techniq			
A. asy	mptotic analysis	B. potential function	s .C. recursion trees	D. substitution method		
16. Which of t	he following is not tr	ue regarding Bloom fil	ters?			
B. The C. An	indication that a can	ze depends on the numl	per of items and the fals the set is always correct esentation.			

17. Which of the following binary trees has *multiple* legal colorings as a red-black tree?

- 18. Sorting the set of input edges is a property of which minimum spanning tree technique?
- A. Boruvka **孝**Kruskal C. Path-based (Warshall) D. Prim
- 19. When using Brent's rehash during insertion, the number of previously inserted keys that may move is:

- B. 2
- C. $\frac{1}{\alpha}$ D. H_m , where m is the number of stored keys
- 20. The goal of the optimal matrix multiplication problem is to:

- A. Minimize the number of C(i,j) instances evaluated.
 - B. Minimize the number of matrix multiplications.
 - Minimize the number of scalar multiplications.
 - D. Minimize the number of scalar additions.
- 21. The main difference between MTF and OPT for self-organizing linear lists is:

A. MTF is given the entire request sequence in advance, while OPT receives the requests one-ata-time

- B. OPT counts inversions
- 2. OPT is given the entire request sequence in advance while MTF receives the requests one-at-
- D. MTF can do transpositions
- 22. Which minimum spanning tree algorithm may use a priority queue?

- __ A. Boruvka
- B. Kruskal
- T. Prim
- D. Warshall

23. Warshall's algorithm on a directed graph with n vertices uses this much time:

B. $\Theta(n)$

C. $\Theta(n \log n)$

D. $\Theta(n^2)$

24. The perfect hashing method discussed in class depends on which fact?

 $A. \sum_{k=0}^{\infty} x^k = \frac{1}{1-x} 0 < x < 1$

- B. $\ln n < H_n < \ln n + 1$
- C. The expected number of probes for a successful search in Brent's method is less than 2.5.
- \Rightarrow The probability of collisions among *n* keys stored in a hash table of size n^2 is less than 0.5.
- 25. When performing selection in worst-cast linear time, roughly what fraction of the set of n keys is kept (in the worst case) for the next round?

A. 10%

B. 20%

C. 30%

D. 70%

1. Demonstrate Boruvka's algorithm on the following graph. Be sure to indicate the edges that are inserted into the MST in each phase. (10 points)

2. The hash table below was created using double hashing with Brent's rehash. The initial slot $(h_1(key))$ and rehashing increment $(h_2(key))$ are given for each key. Show the result from inserting 7097 using Brent's rehash when $h_1(7097) = 6$ and $h_2(7097) = 6$. (10 points)

				Partial Credit
	key	$h_1(key)$	$h_2(key)$	
0	7000	0	5	0 5 3
1				
2	7002	2	1	23 40
3				
4	7081	4	2	461
5	7005	5	4	5 2 6 3
6	7006	6	5	4 6 5 2 6 4 2 0 5 3
			170	097 6 5 4 3
				Appeter and the second
				new 1 2 3 4 old 5 3 2 0 5 5 7 + total
	key			6 5 5 (F) - total
0	7000			additional
1				Significant
2	7002	•		20
(3)	7097	(30)		3/
4	7081			
5		-		
6	7005 7006			

Indicate the additional number of probes for searching for each key once after 7097 is inserted:

Answer (4) (3p)

3. Construct the final optimal binary search tree (using Knuth's root trick) and give its cost. SHOW YOUR WORK. (10 points)

```
n=6:
                       w[2][2]=0.020000
                                                                  trees in parenthesized prefix
                                                                                                     KNUTH
q[0]=0.0;
                       w[2][3]=0.150000
                                                                  c(0,0) cost 0.000000
key[1]=10;
                       w[2][4]=0.270000
                                                                  c(1,1) cost 0.000000
p[1]=0.1;
                       w[2][5]=0.420000
                                                                  c(2,2) cost 0.000000
q[1]=0.04;
                       w[2][6]=0.660000
                                                                  c(3,3) cost 0.000000
key[2]=20;
                       w[3][3]=0.120000
                                                                  c(4,4) cost 0.000000
p[2]=0.2;
                       w[3][4]=0.240000
                                                                  c(5,5) cost 0.000000
q[2]=0.02;
                       w[3][5]=0.390000
                                                                  c(6,6) cost 0.000000
key[3]=30;
                       w[3][6]=0.630000
                                                                  c(0,1) cost 0.140000 1
p[3]=0.01;
                       w[4][4]=0.090000
                                                                  c(1,2) cost 0.260000 2
q[3]=0.12;
                       w[4][5]=0.240000
                                                                  c(2,3) cost 0.150000 3
key[4]=40;
                       w[4][6]=0.480000
                                                                  c(3,4) cost 0.240000 4
p[4]=0.03;
                       w[5][5]=0.030000
                                                                  c(4,5) cost 0.240000 5
q[4]=0.09;
                       w[5][6]=0.270000
                                                                  c(5,6) cost 0.270000 6
key[5]=50;
                       w[6][6]=0.040000
                                                                  c(0,2) cost 0.500000 2(1,)
p[5]=0.12;
                       Building c(0,2) using roots 1 thru 2
                                                                  c(1,3) cost 0.540000 2(,3)
q[5]=0.03;
                       Building c(1,3) using roots 2 thru 3
                                                                  c(2,4) cost 0.420000 4(3,)
key[6]=60;
                       Building c(2,4) using roots 3 thru 4
                                                                  c(3,5) cost 0.630000 4(,5)
p[6]=0.2;
                       Building c(3,5) using roots 4 thru 5
                                                                  c(4,6) cost 0.720000 6(5,)
                       Building c(4,6) using roots 5 thru 6
q[6]=0.04;
                                                                  c(0,3) cost 0.780000 2(1,3)
w[0][0]=0.000000
                       Building c(0,3) using roots 2 thru 2
                                                                  c(1,4) cost 0.930000 2(,4(3,))
w[0][1]=0.140000
                       Building c(1,4) using roots 2 thru 4
                                                                  c(2,5) cost 0.810000 4(3,5)
w[0][2]=0.360000
                       Building c(2,5) using roots 4 thru 4
                                                                  c(3,6) cost 1.140000 5(4,6)
                       Building c(3,6) using roots 4 thru 6
w[0][3]=0.490000
                                                                  c(0,4) cost 1.170000 2(1,4(3,))
w[0][4]=0.610000
                       Building c(0,4) using roots 2 thru 2
                                                                  c(1,5) cost 1.440000 4(2(,3),5)
w[0][5]=0.760000
                       Building c(1,5) using roots 2 thru 4
                                                                  c(2,6) cost 1.350000 5(4(3,),6)
                       Building c(2,6) using roots 4 thru 5
w[0][6]=1.000000
                                                                  c(0,5) cost 1.710000(2(1,4(3,5))
                       Building c(0,5) using roots 2 thru 4 TVAC(1,6) cost 2.100000 5(2(,4(3,)),6)
w[1][1]=0.040000
w[1][2]=0.260000
                       Building c(1,6) using roots 4 thru 5
                                                                  c(0,6) cost ???????? ?????,???
w[1][3]=0.390000
                       Building c(0,6) using roots ? thru ?
                                                                    cte,0] + c(1,6)
w[1][4]=0.510000
                       Counts - root trick 33 without root
w[1][5]=0.660000
                           trick 50
                                                                                        X
w[1][6]=0.900000
                       Average probe length is ????
```

4. Use the substitution method to show that $T(n) = T(\frac{n}{2}) + n^2$ is in $O(n^2)$. (You do not need to show that T(n) is in $O(n^2)$.) (10 points)

Suppose
$$T(k) \le ck^2$$
 for $k < n^{-(3p)}$
 50 , $T(\frac{n}{2}) \le c\frac{n^2}{4} - (4p)$
 $T(n) = T(\frac{n}{2}) + n^2$
 $= cn^2 - \frac{3}{4}cn^2 + n^2$

5. Show the result of deleting 30 from this red-black tree (preserving red-black properties). Be sure to indicate the cases that were used. (10 points)

