CSE 5311 Homework #1 Solutions

Fall 2002

1 Binary Search Tree

Find the optimal binary search tree for the given keys and probabilities. The optimal
subtree for all members of each family is given in Figure 1.

15 10 15 15 15 15
10/ \20 5/ 10/ \20 1 / 0/ \
/ 5/

5

Figure 1: Optimal BST

The code (http://reptar.uta.edu/NOTES5311/0bst.c) is as follows:

// Optimal binary search tree
#include <stdio.h>
#define MAXKEYS (30)

int n; // number of keys

int key[MAXKEYS+1];

float p[MAXKEYS+1]; // probability of hitting key 1

float g[MAXKEYS+1]; // probability of missing between key[i-1] and
key[i]

float c[MAXKEYS+1] [MAXKEYS+1]; // cost of subtree

int r[MAXKEYS+1] [MAXKEYS+1]; // root of subtree

float w[MAXKEYS+1] [MAXKEYS+1]; // accumulated p and g

void opttree ()

{
float x,min;
int i,3,%,h,m;

for (i<0;i<=n;i++)

c[i]1[1i]1=0; // width of tree h=0
for (i=0;i<n;i++) // width of tree h=1
{

K Q u-

=i+1;
(11 [31=wlil (31~
[(11031=3;
}
for (h=2;h<=n;h++)
for (i=0;i<=n-h;i++)
{
j=i+h;

printf ("Building c(%d
i,3,rli1[3-11,r[i+1
m=r[i] [j-11;
min=c([i] [m-1]+c[m] [J];
for (k=m+l;k<=r[i+1][J];k++)
{
x=c[i] [k-1]1+c[k][J];
if (x<min)
{
m=k;
min=x;

%d) using roots %d thru %d\n",
[

1031)

}
}

void prefix(int i,int 7j)
// prints optimal binary search tree
{
if (i<3)
{
printf ("%d", keyl[r[i]([31]1);
if (i<r[il[j]-1 && r[i][J]1<3)
{
printf (" (") ;
prefix (i, r[l}[j}—l);
printf (",
prefix (r
printf (
}
else if (i<r[i]lI[j]1-1)
{
printf
prefix
printf
printf

(i J[jJ,j
")

(")
i,r[i]1031-1);

n ") .

’
")")’.

o~ e~~~

}
}
}

main ()

{

int i,3;

n=4;
ql[0]=0.01;
key[1]1=5;
pll]1=0.03;

gll1=0.02;
key[2]1=10;
pl2]1=0.16;
gl[2]1=0.08;
key[3]1=15;
pl[31=0.20;
ql[3]1=0.20;
key[4]1=20;
pl4]=0.1;
ql4]1=0.2;
for (1=0;i<=n;i++)
{
wli]l [i]1=q[i];
printf ("w[%d] [%d]=%f\n",1i,1,w[i][1i]);
for (j=i+1l;j<=n;j++)
{
wlil [J]1=wl[i] [J-11+p[J]1+ql]];
printf ("w([%d] [$d]=%f\n", 1,3, w[i][]])~

}
}
opttree();

printf ("Average probe length is %f\n",c[0] [n]/w[0][n]);
printf ("trees in parenthesized prefix\n");

(i=0;i<=n; i++)
(3=0;j<=n-1;J++)

for
for

{
printf

}

("c (%d, %d)
prefix (j,j+i);
printf ("\n") ;

The outputs are as follows:

£ = = 5 8 5 g £ 5 2 5 5 7 %
WWNNNNHRERFRRPRRPROOOOO
O D D S e s s s LSS S S
BWd WD WNEFE D WN - O
M
Il Il

leNeoNeoNeoNoNoNoNoNeol s NeolloNeoNe!

w[4][4]1=0
Building c
Building c
Building
Building
Building
Building

.010000
.060000
.300000
.700000
.000000
.020000
.260000
.660000
.960000
.080000
.480000
.780000
.200000
.500000
.200000

using
using
using
using
using
using

roots
roots
roots
roots
roots
roots

wwhhwdN R

thru
thru
thru
thru
thru
thru

cost $f ",J,J+i,cl31[3+1i]);

W b Wb wN

Average probe length is 1.860000
trees in parenthesized prefix

c(0,0) cost 0.000000

c(l,1) cost 0.000000

c(2,2) cost 0.000000

c(3,3) cost 0.000000

c(4,4) cost 0.000000

c(0,1) cost 0.060000 5

c(l,2) cost 0.260000 10

c(2,3) cost 0.480000 15

c(3,4) cost 0.500000 20

c(0,2) cost 0.360000 10¢(5)
c(1l,3) cost 0.920000 15(10,)
c(2,4) cost 1.260000 20(15,)
c(0,3) cost 1.060000 15(1 (),)
c(l,4) cost 1.720000 (10 20)
c(0,4) cost 1.860000 15(10(5,),20)

2 Proof of Probe Length

Prove that the optimal static list for n elements with Zipf“s distribution has an average
probe length of J2-.

T mn ko
;piﬂ! Z'l'.p-l Z?.E:—Z-l:Fﬂ.

n =1

3 Upper Bound by Substitution

Find an asymptotic upper bound on the recurrence T'(n) = T(%)+n by using substitution.
Guess: T(n) = O(n). So we need to prove that T(n) < en for some ¢ > 0. Assume
this hold for T(Z2) (ie. T(Z) < ¢2). Substituting into the recurrence yields
T(n) cE+n
(Z+1)n
(e: —£4+1)n
enife> 2

AT 1A

Therefore we have T(n) = O(n).

4 Upper Bound by Iteration

Find an asymptotic upper bound on the recurrence T'(n) = 3T(4)+3n by using iteration.
T(n) = §+ ﬂ(%)

L+3(z437(2)]

= ﬂ-+3 ﬂ+3 [+37(2)]]

L4 Suy Sn L 97T(R)

S Upper and Lower Bound by Substitution

Find an asymptotic upper and lower bound on the recurrence T(r) = 37(2)+1 by using
substitution.

1. Show that T(n) is in Qn) (ie. Ti(n) > en for some ¢ > (.

Assume T(2) > c&. Substituting into the recurrence yields

T(n) XL+1
cn+1
OH.

AV |

Thus T'(n) is in Q(n).
2. Show that Tn) isin O(n) (ie. T{n) < en for some ¢ > 0.
Assume T(%) < . Substituting into the recurrence yields

T(n) < 3241
= en+1

which does not imply T(n) < en for any choice of c. This difficulty can be overcome
by subtracting a lower-order term from our previous guess. Our new guess is
Ti(n) < en — b where b > 0 is a constant. We now assume T(3) < o — b
Substituting into the recurrence yields

T(n) el —b)+1
cn—3bh+1
en—baslongasbh> 2

A 1A

Thus T(n) is in O(n)-
Combining these two parts gives T(n) is in O(n).

6 Upper Bound by Iteration

Use the iteration method to show that f(n) = n is an asymptotic upper bound on
T(n)=3T(%) + 1.

T(n)

1+437(%)
143[1+37(3)]

143 [1+3[1+37(2)]]
14+3409+2TT(&

The ith term is 3. The iteration stops when £ = 1 or i = logz n (assumming T'(1) =
©(1)). Thus, we have

kEan] 1 -1
T()=1+3494+ =Y F=Bntl_dn-1_

: 3—-1 ~ 2
logzn teTms =

O(n)

E

7 Red-Black Tree Insertion

Figure 2 shows the modifications to the tree resulting from the addition of 160.
Nodes which have modified R/B values are depicted by a dashed outline. An empty
square represents an unchanged subtree.

Figure 2: Insertion of 160 into Red-Black Tree

8 Red-Black Tree Insertion

Figure 3 shows the modifications to the tree resulting from the addition of 95. Nodes
which have modified R/B values are depicted by a dashed outline. An empty square
represents an unchanged subtree.

140

GBO QE?B
g ®© o ©OC

Figure 3: Insertion of 95 into Red-Black Tree

9 Red-Black Tree Deletion

Figure 4 shows the modifications to the tree resulting from the deletion of 80. Nodes
which have modified R/B values are depicted by a dashed outline. An empty square
represents an unchanged subtree.

Figure 4: Deletion of 80 from Red-Black Tree

10 Red-Black Tree Deletion

Figure 5 shows the modifications to the tree resulting from the deletion of 30. Nodes
which have modified R/B values are depicted by a dashed outline. An empty square
represents an unchanged subtree.

11 AVL Tree Insertion and Deletion

Figures 6 and 7 show various stages of the insertions. Figure 8 shows the results of
the specified deletions.

Case 4

Figure 5: Deletion of 30 from Red-Black Tree

Original Tree Insert 850

Figure 6: AVL Insertion of 850 thru 950

Insert 450 thru 475 Insert 412

Figure 7: AVL Insertion of 450 thru 412

Delete 412 & 1100 Delete 550 & 800

Figure 8: AVL Deletion of 412 thru 480

12 Problem 4.3-1

a)

b)

T(n) = 4T(8) +n
a=4,b=2,f(n)=n

n'Ee = ploEzt = p?

f(n) =n = O(n"%%)_¢(n*) case 1
Thus Ti(n) = O(n*2*) = &(n?)

T(n) = 4T(%) +n?
a=4,b=2, f(n) =n?

fln) = n? = O(n'"2*) case 2
Thus T(n) = ©(n*lgn)

Ti(n) = -4Tlf%j + n?

a=4,b=2, f(n)=n®

fln) ==t e=1> 0 case 3
af(#) < ef(n) for some ¢ < 1

or 4 < end
ﬂr%icwhjchistmefcnréﬂc{l
Thus T(n) = ©(n*)

13 Problem 4.3-2

T(n) =TT(L) +n?

a=T,0=2, f(n)=n*

-n_]-‘:gba' = ﬁ_l':'gir ol "&,2'8

f(n) =n? = O(n'o8™%) ¢ = (.8 > 0 case 1
Thus T{ﬂ-:l = El(_ﬂhgﬂ 7:1

T(n) = aT"(2) + n?

b=4, f(n) =n?

nE 8 = plogga

nPEe — ﬂ_l':'giT or nlEde = -n_l':‘:EzT
Thus a = 4% 7 ~ 48.50293

50, the angwer is o = 48.

14 Problem C-1

a) For every ball we have a choice of putting it in one of b bins.

T

e —
Thus bxbx---xbh=0"

b) Using the hint, b — 1 sticks and n balls ean be arranged in (n+ b — 1)! ways. Sinece
the sticks are identical the unique number of ways are:
(n+b—1)
{b—1)!

¢) Since the n balls are identical, n! permutations must be removed which gives:

(n+b—1N1 fntb—1
n{.z-—n! H‘(ﬂ n)

d) Here the assumption is that the number of balls are less than the number of bins.

This gives us (:;) ag the number of ways to place the n balls.

e) Sinee the bing are not to be empty and the balls are identical, the problem shifts to
placing (n — b) identical balls into b bins in 2 ways. Using part ¢) we get:

=(G2)=62)

This solution is taken nearly verbatim from the printed solution.

15 Problem 9.3-1

» For groups of 7, the algorithm still works in linear time. The number of elements
greater than 2 (and less than) is at least 4([5[27]—2) = %2 —8, and the recurrence
becomes

T(n) < T([n/T]) + T(5n/7 + &) 4+ O(n)

which can be shown to be O(n) by substitution.

+ For groups of 3, however, the algorithm no longer works in linear time. The recur-
rence becomes
Tin) < T([n/31) + T (2n/3+ 4) + O(n)

which does not have a linear solution. This can be proved by showing that the worst-
case time for groups of 3 is (W(nlgn), which can be done by deriving a recurrence
for a particular case that takes Q(nlgn) time.

In counting up the number of elements greater than z, congider the particular
case in which there are exactly [$[2]] groups with medians > 2 and in which
the “leftover” group contributes 2 elements greater than z. Then the number of
elements greater than z is excactly 2([3[2]] — 1) + 1 (the —1 discounts 2”s group
and the +1 is contributed by #’s group) = 2[n/6] — 1, and the recursive step for
elements < x has n — (2[n/6] — 1) > £ — 1 elements. This give the recurrence

T(n) = T([n/3]) + T(2n/3 — 1) + @(n) = T(n/3) + T(2n/3 - 1) + ©(n)

from which you can show that T(n) > cnlgn by substitution. You can also see
that T(n) is non-linear by noticing that each level of the recursion tree sums to n.

+ (In fact, any odd group size > 5 work in linear time.)

16 Problem 11.4-1

Table 1 gives the results of each method. Noter In this case, because of the order of the
ingerts, Brent’s rehash ends up with the same tables as double hashing. If you insert
key 31 after key 15, you will notice that the hash table remains unchanged for double
hashing but changes quite a bit for Brent’s rehash.

17 Problem 14.2-2

Yes. Since the black-height of a node is the number of black nodes in one of its subtrees
(left of right—they have the same number of black nodes), this problem is very similar
to the one given in the text on maintaining as a field the size of a subtree rooted at a
node (page 282-285). The black-heights can be maintained as fields for both insertion
and deletion without affecting the asymptotic running times of either operation because
the updates will only be local.

linear quadratic double Brent's

probing probing hashing rehash
0 22 0 22 0 22 0 22
1 &8 1 1 1 1 1 1
2 1 2 88 2 59 2 59
3 1 3 17 3 17 3 17
4 4 4 4 4 4 4 4
5 15 5 1 5 15 5 15
6 28 6 28 6 28 G 28
7 17 7 59 7 &8 T 83
8 59 3 15 3 1 3 1
9 31 9 31 9 31 9 31
10 10 10 10 10 10 10 10

Table 1. Solutions to Problem 11.4-1

18 Problem 14.2-3

No. When the depth of a node is maintained as a field, a rotation requires changing the
depth information of all the nodes in the subirees involved. For example, a rotation at
the root will require the depth field of all n nodes in the RB-tree to be updated which
cannot be done without affecting the asymptotic (O(logn)) performance of the RB-tree
operations.

19 Binomial Queue Question

Why does insertion into a binomial queue take O(1) amortized time?

It can be observed that half of the insertions (every other insertion) require no merging
at all, and for the other half of the inserts there are a very limited number of operations.
Actually, this problem is similar to that of incrementing a binary counter as given in the
text book (pages 358—360) and the sequence of operations and the subsequent analysis
is the same as the for the binary counter. Thus, insertion into a binomial queue takes
O(1) amortized time.

20 Binomial Queue Merge

Figure 9 shows the steps involved in merging the two binomial queues.

Initial State for H1 Initial State for H2
headH1]>{:)}—(2) head[H2]>()—-(s }—(>)
01010

()

Step Three
headHls(:)>(i)f - - - |

OONO

()

Final Step
head[H]

Figure 9: Merge of Binomial Queues

21 AVL Tree Deletion

Figure 10 shows the results of the special deletion. Empty boxes are used to denote
unchanged subtrees.

Delate 3&: Unbalanced at 37 Unbalancad at 42

Figure 10: Deletion of 36 from AVL Tree

22 Optimal BST Construction

Tle= answers are as follosys:

» bushdimg i), 5) ustng Toots 2 thry 3

w Sverage probe kength &5 2015080

* C(05) oost 2. 15000 200 10,300 5000))

Optimal bnary seanch tres &5 given m Fagure 122

/2 G\

10 30\

50

/
40

Figure 11: Optimal BST

o oot 55 215

23 Amortized Complexity Analyses

Potential method: Assuming a sequence of operations, the potential function is C;* =
C; + ©(D;) -®(D;.1), where C;= actual cost of ith operation, C;* = amortized cost, D;
= D.S. state before ith operation, D;= D.S. state after ith operation.

r(x) is defined as the rank of node x, by setting the rank of the root to 0 and
applying

r(x”.leftchild) = r(x) -1
r(x”*.rightchild) = r(x) -1 (postorder traversal of the tree method)

and

r(x".leftchild) = r(x) +1
r(x*.rightchild) = r(x) +1 | (preorder traversal of the tree method)

Tracing the postorder traversal of the tree, and calculating the amortized
complexity of each operation gives Table 2. Table 3 summaries the results for
preorder traversal case.

I Operation D oD) G C* =C; + O(D)) -®(Di.1)

x=nil 0

1 x:=PostorderlInit(T) x=I -4 4 0
2 x:=PostorderSucc(x) x=F -4 2 2
3 x:=PostorderSucc(x) x=E -3 1 2
4 x:=PostorderSucc(x) x=D -2 1 2
5 x:=PostorderSucc(x) x=H -1 1 2
6 x:=PostorderSucc(x) x=A -2 3 2
7 x:=PostorderSucc(x) x=C -2 2 2
8 x:=PostorderSucc(x) x=B -1 1 2
9 x:=PostorderSucc(x) x=G 0 1 2
10 x:=PostorderSucc(x) x=nil 0 0 0
Table 2: Postorder Traversal Case
I Operation D oD) G Ci* =C; + O(D;) -®(Di.1)
x=nil 0
1 x:=PreorderlInit(T) x=G 0 0 0
2 x:=PreorderSucc(x) x=H 1 1 2
3 x:=PreorderSucc(x) x=D 2 1 2
4 x:=PreorderSucc(x) x=E 3 1 2
5 x:=PreorderSucc(x) x=I 4 1 2
6 x:=PreorderSucc(x) x=F 4 2 2
7 x:=PreorderSucc(x) x=B 1 5 2
8 x:=PreorderSucc(x) x=A 2 1 2
9 x:=PreorderSucc(x) x=C 2 2 2
10 x:=PreorderSucc(x) x=nil 0 2 0

Table 3: Preorder Traversal Case

24 MST Using Warshall’s algorithm

The results are as follows:

1 2 0.14
1 4 021
3 4 012
4 5 0.1
a 6 0.25
6 7 021
6 9 023
8 9 019

25 23.2-4

When the edge weights are integers in the range 1 to [V], then line 4 (p. 505) of Kruskal's
algorithm can be done using the counting sort in O(E) time but the digjoint-set forest
operations still take O(E'1g EY) time. So the total running time remains O(E'lg E).

When the edge weights are integers in the range 1 to W for some constant W, it
doesn’t change anything. Running time remains O(E 1g E).

26 23.2-5

If the edge weights are integers in the range 1 to W and W is a very small constant (say
3, i.e., all edge weights are either 1, 2 or 3), then the priority queue can be maintained
as a doubly-linked list with the operation Extract-Min taking O(1) time and then the
running time or Prim’s algorithm becomes O(|V| + | E|)-

If the edge weights are integers in the range 1 to [V] it doesn’t really change anything
except when |V] is very small the the W chosen above.

	Figure 2: Insertion of 160 into Red-Black Tree
	Table 2: Postorder Traversal Case
	Table 3: Preorder Traversal Case

