CSE 5311 Homework #1 Solutions

Summer 1996

1 Binary Search Tree

Find the optimal binary search tree for the given keys and probabilities. The optimal
subtree for all members of each family is given in Figure 1.

15 10 15 15 15 15
/N
10/ \20 5/ 10/ \20 10/ 10 20

/ /

S 5

Figure 1: Optimal BST

2 Proof of Probe Length

Prove that the optimal static list for n elements with Zipf’s distribution has an average
probe length of 7.

i:zlpiCizzzpi:izzlliHn:iHn21:F

=1 =1 n

3 Ordered Lists

Assumming that the probability of a key being accessed is independent, of its key value,
for what cases are ordered lists better than the optimal static list technique? (Binary
search not allowed.)



4 CIRCULAR LISTS 2

The expected number of probes for the optimal static list where the keys are ordered
by decreasing probability is

P =Y iP+nYV;
=1 =0

where V; is the probability of a miss in between key ¢ and key 7 + 1. In this case, a miss
requires looking at all n elements.
The expected number of probes for the sorted list (sorted by key value) is

n n
Py = 21 iPsorted list, T ™ Zo Vsorted list,-
1= 1=

So an ordered list (ordered by key value) is better then P, < P;.

4 Circular Lists

Suppose a circular list has 5 elements in order by decreasing Zipf probability and wrapping
around. Each search starts with the last element found. What is the expected number
of probes required to find an element?

x1

@
X5 @ x2

DR

X4 X3

Figure 2: Circular List

Based on Figure 2 the expected number of probes is

P (P04 py*x1+ Pyx2+4 Py %3+ ps*x4)+
Py(Po%0+p3*1+ Py*x2+4 Ps+3+p; x4)+
P3(P3*0+p4*1+P5*2+P1*3+p2*4)+
P4(P4*0+p5*1+P1*2+P2*3+p3*4)+
P5(P5*0+p1*1+P2*2+P3*3+p4*4)

_ 1
where P, = T



5 OPTIMAL BINARY SEARCH TREE WITH 5 KEYS 3

5 Optimal Binary Search Tree with 5 Keys

See Figure 3

Figure 3: Optimal BST with 5 Keys

6 Cost Function

Not Done.

7 Upper Bound by Substitution

Find an asymptotic upper bound on the recurrence 7'(n) = 7'(§)+n by using substitution.
Guess: T'(n) = O(n). So we need to prove that T'(n) < c¢n for some ¢ > 0. Assume
this hold for T'(%) (ie. T'(%) < c%). Substituting into the recurrence yields

T(n) cg+n
(§+1n
(c—%+1)n
cn if ¢ > g

Il IA

IA

Therefore we have T'(n) = O(n).

8 Upper Bound by Iteration

Find an asymptotic upper bound on the recurrence T'(n) = 3T'(2)+ 1n by using iteration.

T(n) = 5+31(3)
1 +3[2+37(%)]
= 24+3[2+3[&+37(2)]]
24 3m oy 3 2TT ()



9 UPPER AND LOWER BOUND BY SUBSTITUTION 4

The ith term in the series is 2 4+ The iteration hits n = 1 when ﬂ, =1 or, equivalently,

when ¢ exceeds log, n. By continuing the iteration until this pomt it can be seen that
the summation contains a decreasing geometric series:

T(n) S n+3n+9n+ 3log4n
S g oo ( ) +@( log4 )since 310g4n _n10g43
= g4+0( n) since log, 3 < 1, hence O(n'*83) = O(n)
= 2n+0(n)
= O(n)

9 Upper and Lower Bound by Substitution

Find an asymptotic upper and lower bound on the recurrence T'(n) = 3T(3) + 1 by using
substitution.

1. Show that T'(n

) is
Assume T'(3) > c%. Substituting into the recurrence yields

s in Q(n) (ie. T(n) > cn for some ¢ > 0.

T(n) 3cg +1
cn+1

cn

AVAN | INAVS

Thus T'(n) is in Q(n).

2. Show that T'(n) is in O(n) (ie. T'(n) < c¢n for some ¢ > 0.

) is
Assume T'(%) < c%. Substituting into the recurrence yields
T(n) < 3cg+1
= cn+1

which does not imply T'(n) < ¢n for any choice of ¢. This difficulty can be overcome
by subtracting a lower-order term from our previous guess. Our new guess is
T(n) < cn —b where b > 0 is a constant. We now assume 7T'(%) < c§ — b.
Substituting into the recurrence yields

T(n) < 3(c5—0)+1
= en—3b+1
< cn—baslongasbzé

Thus T'(n) is in O(n).

Combining these two parts gives T'(n) is in ©(n).



10 UPPER BOUND BY ITERATION AGAIN 5

10 Upper Bound by Iteration Again

Use the iteration method to show that f(n) = n is an asymptotic upper bound on
T(n) = 3T(2) + 1.

T(n) = 14307(2)
1+3[1+37(2)]

= 1+3[1+3[1+37(%)]]
= 1+3+9+27T(2)

The ith term is 3. The iteration stops when 2 = 1 or 7 = logg n (assumming 7'(1) =

3%
©(1)). Thus, we have

] 1 3n—1
T(n)=\1+3+9+--;:Z?f:Og;”_”‘;r = = om)

log; n terms

11 Open-Address Hash Table

Determine the expected number of probes in a successful search of an open-address hash
table which has the properties given in the problem.
When the table is full we have m = n. Thus the expected number of probes is

n—1 m 2(7L—i)
1=0 m—in(n+1)
m—1 m Q(M*Z’)
=0 m—¢ m(m+1)
2 m—1

it 1

m+1
2m

m+1

2

IA

12 Red-Black Tree Insertion

Figure 4 shows the modifications to the tree resulting from the addition of 160. Nodes
which have modified R/B values are depicted by a dashed outline. An empty square
represents an unchanged subtree.

13 Red-Black Tree Insertion Again

Figure 5 shows the modifications to the tree resulting from the addition of 95. Nodes
which have modified R/B values are depicted by a dashed outline. An empty square
represents an unchanged subtree.



13 RED-BLACK TREE INSERTION AGAIN 6

B

163)
\R

Figure 4: Insertion of 160 into Red-Black Tree



13 RED-BLACK TREE INSERTION AGAIN 7

Figure 5: Insertion of 95 into Red-Black Tree



14 RED-BLACK TREE DELETION 8

14 Red-Black Tree Deletion

Figure 6 shows the modifications to the tree resulting from the deletion of 80. Nodes
which have modified R/B values are depicted by a dashed outline. An empty square
represents an unchanged subtree.

Figure 6: Deletion of 80 from Red-Black Tree

15 Red-Black Tree Deletion Again

Figure 7 shows the modifications to the tree resulting from the deletion of 30. Nodes
which have modified R/B values are depicted by a dashed outline. An empty square
represents an unchanged subtree.

16 AVL Tree Insertion and Deletion

Figures 8 and 9 show various stages of the insertions. Figure 10 shows the results of the
specified deletions.

17 AVL Tree Deletion

Figure 11 shows the results of the specified deletion. Empty boxes are used to denote
unchanged subtrees.



17 AVL TREE DELETION

Figure 7: Deletion of 30 from Red-Black Tree



17 AVL TREE DELETION 10

Original Tree Insert 850

Insert 950

800

(200 (200

() @ @) @
OENCIOONOICI®
ONS @

Figure 8: AVL Insertion of 850 thru 950



17 AVL TREE DELETION 11

Insert 450 thru 475 Insert 412

Figure 9: AVL Insertion of 450 thru 412

Delete 412 & 1100 Delete 550 & 800

Figure 10: AVL Deletion of 412 thru 800



17 AVL TREE DELETION 12

Delete 36; Unbalanced at 37 Unbalanced at 42

Figure 11: Deletion of 36 from AVL Tree



18 OPTIMAL BST CONSTRUCTION

18 Optimal BST Construction

The answers are as follows:
e building ¢(0, 5) using roots 2 thru 3
e Average probe length is 2.1500
e C(05) cost 2.1500 20(10,30(,50(40,)))

e Optimal binary search tree is given in Figure 12.
/ N
10 30

50

/

40

Figure 12: Optimal BST

e cost is 2.15

19 Problem 4.3-1

a)
T(n)=4T(3)+n
a=4,b=2,f(n)=n
nlogba — nlog24 — n2
f(n) =n=0(n"2¢), ¢(n?) case 1
Thus T'(n) = O(n'*e24) = O(n?)

b)

T(n) = AT(2) + n2
a=4,b=2,f(n)=n?
f(n) =n? = O(n'°%24) case 2

Thus T'(n) = O(n?lgn)

13



20 PROBLEM 4.3-2

c)

T(n) = AT(2) + n®
a=4,b=2, f(n) =n?

f(n) = Q(n'°s24+¢) ¢ =1 > 0 case 3
af(%) < cf(n) for some ¢ < 1

or 4%3 < cn?

or 1 < ¢ which is true for § <ec <1
Thus T'(n) = O(n?)

20 Problem 4.3-2

T(n) =71T(%) +n?

a=7,b=2,1(n) = n?

nlogba — n10g27 ~ n2.8

f(n) =n?=0(n'*827798) ¢ = 0.8 > 0 case 1
Thus T'(n) = O(n'°e27)

T'(n) = aT"(%) + n°

b=4, f(n)=n?

nlogba — nlog4a

nlog4a — nlog2 7 or nlog4a — n10g27
Thus a = 49827 = 48.50293

So, the answer is a = 48.

21 Problem 6-1

a) For every ball we have a choice of putting it in one of b bins.

n

——f—
Thus b xXbx---xb="0b"

b) Using the hint, b — 1 sticks and n balls can be arranged in (n + b — 1)! ways
the sticks are identical the unique number of ways are:
(n+b—1)!
®— 1)

14

. Since



22 PROBLEM 6-2 15

c) Since the n balls are identical, n! permutations must be removed which gives:

(n(;—_b;)ll)!% _ <n+z—1>

d) Here the assumption is that the number of balls are less than the number of bins.

This gives us (Z) as the number of ways to place the n balls.

e) Since the bins are not to be empty and the balls are identical, the problem shifts to
placing (n — b) identical balls into b bins in z ways. Using part c) we get:

()

22 Problem 6-2

a) -

b) A[j] < Al

c) + (which is the probability of it being the MAX of the list seen until that iteration)
d) E[Sj]=1: =1

e)

L ES] =YL i =lhn+0(1)=FE
E =1nn+ O(1) using this result
Thus E = ©(lgn)

23 Problem 10.3-1

This solution is taken nearly verbatim from the printed solution.

e For groups of 7, the algorithm still works in linear time. The number of elements
greater than z (and less than ) is at least 4([5[2]]—2) > 22 —8, and the recurrence
becomes

T(n) <T([n/7]) +T(5n/7+ 8) + O(n)
which can be shown to be O(n) by substitution.



24 PROBLEM 12.4-1 16

linear quadratic double Brent’s
probing probing hashing rehash
0 22 0 22 0 22 0 22
1 88 1 1 1 1 1 1
2 1 2 88 2 59 2 59
3 1 3 17 3 17 3 17
4 4 4 4 4 4 4 4
5 15 5 1 5 15 5 15
6 28 6 28 6 28 6 28
7 17 7 59 7 88 7 88
8 59 8 15 8 1 8 1
9 31 9 31 9 31 9 31
10 10 10 10 10 10 10 10

Table 1: Solutions to Problem 12.4-1

e For groups of 3, however, the algorithm no longer works in linear time. The recur-
rence becomes
T(n) <T([n/3]) +T(2n/3+ 4) + O(n)
which does not have a linear solution. This can be proved by showing that the worst-
case time for groups of 3 is Q(nlgn), which can be done by deriving a recurrence
for a particular case that takes Q(nlgn) time.

In counting up the number of elements greater than z, consider the particular
case in which there are exactly [$[%]] groups with medians > z and in which
the “leftover” group contributes 2 elements greater than xz. Then the number of
elements greater than = is excactly 2([3[2]] — 1) + 1 (the —1 discounts z’s group
and the +1 is contributed by z’s group) = 2[n/6] — 1, and the recursive step for
elements < z has n — (2[n/6] — 1) > %' — 1 elements. This give the recurrence

T(n) > T([n/3]) + T(2n/3 — 1) + O(n) > T(n/3) + T(2n/3 — 1) + O(n)

from which you can show that T(n) > cnlgn by substitution. You can also see
that T'(n) is non-linear by noticing that each level of the recursion tree sums to n.

e (In fact, any odd group size > 5 work in linear time.)

24 Problem 12.4-1

Table 1 gives the results of each method. Note: In this case, because of the order of the
inserts, Brent’s rehash ends up with the same tables as double hashing. If you insert
key 31 after key 15, you will notice that the hash table remains unchanged for double
hashing but changes quite a bit for Brent’s rehash.



25 PROBLEM 15.2-2 17

25 Problem 15.2-2

Yes. Since the black-height of a node is the number of black nodes in one of its subtrees
(left of right—they have the same number of black nodes), this problem is very similar
to the one given in the text on maintaining as a field the size of a subtree rooted at a
node (page 282-285). The black-heights can be maintained as fields for both insertion
and deletion without affecting the asymptotic running times of either operation because
the updates will only be local.

26 Problem 15.2-3

No. When the depth of a node is maintained as a field, a rotation requires changing the
depth information of all the nodes in the subtrees involved. For example, a rotation at
the root will require the depth field of all » nodes in the RB-tree to be updated which
cannot be done without affecting the asymptotic (O(logn)) performance of the RB-tree
operations.

27 Binomial Queue Question

Why does insertion into a binomial queue take O(1) amortized time?

It can be observed that half of the insertions (every other insertion) require no merging
at all, and for the other half of the inserts there are a very limited number of operations.
Actually, this problem is similar to that of incrementing a binary counter as given in the
text book (pages 358-360) and the sequence of operations and the subsequent analysis
is the same as the for the binary counter. Thus, insertion into a binomial queue takes
O(1) amortized time.

28 Binomial Queue Merge

Figure 13 shows the steps involved in merging the two binomial queues.



28 BINOMIAL QUEUE MERGE 18

Initial State for H1 Initial State for H2
head[H1]+(2)—() head[H2]>()->(5)—(2)
() &)@
()
Step One Step Two
head[H]>(13 ) )5 (s —(2) (12) head[H]
ONO
Step Three Step Four
head[Hl>()>(1s)f - - - | head[H](% >(7) NG
OJORO F@W @E@E
O ® G ® OEE
Final Step (=) ©

Figure 13: Merge of Binomial Queues



