CSE 5311 Homework #2 Solutions

Fall 2002

1. Problem 26.2-2, also solve using preflow-push

Figure 1 gives the results using Edmonds-Karp. Augmenting paths are indicated
by dashed lines.

Residual Network Flow Network

Maximum Flow = 23

Figure 1: Edmonds-Karp Solution

o
BB
ON WO

BB WWNNMNREFROOOO
GWONBHENMWNKRER
o

1N

B d N O
o

Table 1: Input File for preflowPushFIFO.c

For the preflow-push results you may use preflowPushFIFO.c located in the
web site (http://reptar.uta.edu/NOTES5311/preflowPushFIFO.c). Table 1 gives
an input file which encodes the figure from the book into the proper format for
that program. The source is assigned a node number of 0 and the sink a node
number of 5. The other node numbers correspond to the numbers in the
diagram. The output is as follows:

vertex height excess
0 6 -29

16
13

0

0

0
1 head capacity flow

1 16 16

13 13
10 0
12
4
14
9
20
7
5 4 0
debug: lifting 1 from 0 to 1
debug: pushing 10 units from 1 to 2
debug: pushing 6 units from 1 to 3
debug: lifting 2 from 0 to 1
debug: pushing 14 units from 2 to 4
debug: lifting 2 from 1 to 2
debug: pushing units from 2 to 1
debug: lifting from 0 to 1
debug: pushing units from 3 to 5
debug: lifting from 0 to 1
debug: pushing units from 4 to 5
debug: lifting from 1 to 2
debug: pushing units from 4 to 3

O O O oo

ta

W WNDNRERE R OO O WN P
W 0N wWwNDN
cNoNoNoNoNe)

S

~ D oY WO

http://reptar.uta.edu/NOTES5311/preflowPushFIFO.c

from 2 to 3

units from 4 to 2
from 1 to 2

units from 1 to 3
from 2 to 3

units from 1 to 2
3 units from 3 to 5
from 2 to 4

units from 2 to 1
from 3 to 5

units from 1 to 2
units from 2 to 4
from 4 to 6

units from 2 to 1
from 3 to 7

units from 4 to 2
from 5 to 7

debug: lifting
debug: pushing
debug: lifting
debug: pushing
debug: lifting
debug: pushing
debug: pushing
debug: lifting
debug: pushing
debug: lifting
debug: pushing
debug: pushing
debug: lifting
debug: pushing
debug: lifting
debug: pushing
debug: lifting
debug: pushing units from 1 to O
debug: lifting from 6 to 7
debug: pushing 3 units from 2 to O
total flow is 23

flows along edges:

0->1 has 13

0->2 has 10

1->2 has 1

1->3 has 12

2->4 has 11

3->5 has 19

4->3 has 7

4->5 has 4

NWkFEFWdWNWOOTRFROONDE WERE O Wb

2. Lattice for Stable Marriage Problem

Figure 2 shows the male-oriented lattice.

3

A

oW
/e'\

N

5

N

J

Figure 2: Stable-Marriage Lattice

3. Problem 22-1

a. Undirected Graph with breadth-first search (BFS):

e Because of the properties of BFS—the way nodes are visited in BFS, there
can be no back and forward edges. The edges that constitute as back and
forward edges in depth-first search (DFS), have already been visited through
the parent and are tree edges in a BFS of an undirected graph.

e Again, because of the way nodes are visited in a BFS, for each tree edge (u,v),
d[u] has to be equal to du]+ 1.

e Two kinds of situations may arise where there can be cross edges. These are
depicted in figure 3. In one case d[v] = dfu] and in the other case dv] = d[u]+L1.

b. Directed Graph with BFS:

dlv] = d[u] d[v] = d[u] + 1

Figure 3: Undirected Graph Using BFS

e Because the graph is directed, it can now have back edges. However, there
are still no forward edges, because of the way nodes are visited in a BFS. The
forward edges of a DFS are tree edges in a BFS already visited by the parent

node.

® Same as a) 2 above.

® Same as a) 2 above. So, d[v] < d[u] +1.
e Two examples of a back edge in a BFS of a directed graph are given in figure 4.
In one case we have d[v] < d[u] and in the other case we have 0 < d[v] < d[u].

dv] 0 dv] =0

Figure 4: Directed Graph Using BFS

4. Max Flow Using Preflow-Push

The following output was obtained by using preflow-push located in the web site
(http://reptar.uta.edu/NOTES5311/preflowPushFIFO.c). The source is assigned
a node number of 0 and the sink a node number of 3. The nodes labeled A and B
are given labels of 1 and 2, respectively.

debug: after initializatiom
i height ewcese

4 0

Q i

0 =0

0 0
j capacity ...flow
i 10 10
2 20 20
3 100 0
3 20 0

(1,0) changed minHeight to 4
(1,3) changed minHeight to 0
lifting 1 from O to 1
(2,0) changed minMeight to 4
(2,3) changed minMeight to 0
lifting 2 from O to 1

111 i

http://reptar.uta.edu/NOTES5311/preflowPushFIFO.c

debug:
1 height excess

0 4 0
1 1 10
2 1 50
3 0 0
i j capacity ...flow
0 1 10 10
0 2 50 50
1 3 100 0
2 3 20 0

debug: pushing 10 units from 1 to 3
debug: pushing 20 units from 2 to 3

debug:
1 height excess
0 4 0
1 1 0
2 1 30
3 0 30
i j capacity ...flow
0o 1 10 10
0o 2 50 50
1 3 100 10
2 3 20 20

debug: (2,0) changed minHeight to 4
debug: lifting 2 from 1 to 5

debug:
i height excess
0 4 0
1 1 0
2 5 30
3 0 30
i j capacity ...flow
0 1 10 10
0 2 50 50
1 3 100 10
2 3 20 20
debug: pushing 30 units from 2 to 0
debug:

i height excess
0 4 30

O O H W

2

debug:

5 0

0 30
j capacity
1 10
2 50
3 100
3 20

1 height excess

0

N = OO H Wk

4 30
1 0
5 0
0 30
J capacity
1 10
2 50
3 100
3 20

final result:
1 height excess

0

B = O O H W M =

4 30
1 0
5 0
0 30
j capacity
1 10
2 50
3 100
3 20

...flow
10
20
10
20

...flow
10
20
10
20

...flow
10
20
10
20

5. KMP Fail Links

The Knuth-Morris-Pratt fails links (both methods) for the search pattern abracadabra
are given in the table below:

a b r

Method1l 0 1 1

Method2 0 1 1

S[3]: case 1

S[4]: case 1

S[5]: case 1

S[6]: case 1

S[7]: case 1

S[8]: case 1

S[9]: case 2, kprime=2
S[10]: case 2, kprime=3
S[11]: case 3

a 11

o m
CH -
= b o

a ¢
1 2
0 2

=R
= W -
O o

—— O 0 NN A W=

=
P RT MDA e D=
—_—-c o h O R OO

6. Complexity of Recursive Matrix Multiplication

Suppose that matrix multiplication is implemented in a recursive decomposition fashion
like Strassen’s methods. However, instead of using his equations we use the everyday
ones, i.e., Cjj = Ay * Bij + An + By;. What is the asymptotic complexity, based on the
number of scalar multiplies and additions/subtractions?

For C' = AB, we divide each of A, B, C into four % X & matrices. Then,

rs\ _ [ab) [eg
62)=9 G3)
Then according to: Ci; = Ay * Byj + Ap * By; we haver
T ae + bf
s ag + bh
t ce + df
1 cg + dh

Each of these four equations specifies two multiplications of 3 X 5 and addition of
2 x & products. Then the number of multiplies is 8 and the number of additions is 4.

1. Let M(k) be the # of scale multiplies for n = 2. Then,

M@O) = 1
M(1) = 8
M(k) = sM(k—1)
M(n) = n*

2. Let P(k) be the # of additions for n. = 2. Then,

P0) = 0

Pl) = 4

P(ky = 8P(k—1)+n?
P(n) = 8P(n/2)+n’
P(n) = o(n*)

So, the asymptotic complexity is ©(n?).

7. Rectangle-Fit Problem is NP-Complete

This problem can be reduced from the bhin-packing problem. The rectangle-fit problem
is obviously in NP because it can easily be verified in polynomial time whether a given
set. of rectangles fits within another given rectangle with dimensions x and .

To prove that it is NP-hard, we reduce it from the bin-packing problem in the following
manner. The bin-packing problem says that given a set of objects, each weith size > 1,
then £ is the minimum number of unit-sized bins needed to pack all the objects. There
is a direct relationship between the rectangle-fit problem and the bin-packing problem

as can be seen from the diagram given in Figure 5.

-axis
el 1

k4

A
v

rectangle-fit bin-packing

Figure 5: Rectangle Fit and Bin Packing

The reduction is obvious from Figure 1. We set dimension x of the minimum sized
rectangle needed to fit all the other rectangles equal to unit size. Dimension y is given
by the number (k) of bins required to cover the total width of the set of rectangles.

Thus, the rectangle-fit problem will have a covering rectangle of dimensions x and
i if and only if the bin-packing problem packs all the object into % bins of size & such
that kw = 7, where w is the width of each bin. Thus, the rectangle-fit problem is
NP-complete.

8. Graph Transitivity Problem is NP-Complete

To prove that the problem is NP-complete we prove that it is in NP and that it is NP-hard
by reducing from another NP-complete problem.

The problem is obviously in NP because it can be easily verified in polynomial time
whether all the directed paths re preserved after removing the given k edges.

To prove that the problem is NP-hard, it is reduced from the Directed Hamiltonian
Circuit problem. The Directed Hamiltonian Circuit problem says that given a directed
graph G, the graph has a simple directed cycle containing each vertex in G.

As can be seen from the preceding diagram of a directed Hamiltonian circuit, the number
of edges in such a cycle is equal to the number of vertices in the graph. Hence the
reduction is as follows. The given problem can have k our of |E| edges removed while
still preserving all directed paths if and only if the corresponding Directed Hamiltonian
Circuit has a simple cycle of size [V'|, where k = |E| — [V|. So, for the example given
below, k = 2 is the optimal (maximum) number of edges that can be removed while still
preserving all directed paths from the original graph. Thus, this problem is NP-complete.

9. Problem 34-1

a) INDEPENDENT-SET = {< ¢, K >| graph & has an independent set of size k).

T prose this pooblem is NP=oompilete we first show that the independent=set poole-
lem is in NF. Suppoee we are given a graph & = (1, F) and an integer & The
oertificate we choose i b independent set 17 € 1V itsell, The werification algorithm
affirms that V'] = k and then for each edee (u,v) € E it cheek that at mest
one of u and v is in V7. This verificition can be performed straight-forwardly in
polynomial time.

We prone that the indepsendent-set problem is NP-hard by showing that CLIQUE o
INDEPENDENT-SET. This meduction is based on the notion of the “complement™

af & graph. Given an undirected graph & = (1, E), we define the complement of &

a8 G = (V. E), where E = {(u,v) | (u.v) € E}.

The recluetion algorithm takes a2 Inpat an instanes < G, K > of the elique pooblem.

Tt eomputes the complement G, which is easily obtained in pohmomial time. The

cutput of the reduction algorithm is the instance < G, K > of the independent-set

problem with the same b wertices in the independent set as in the clique. The
proof is very similar to the vertex-cover problem proof on p. 1006. Using the
same examples as given in the book (figure 34.15 on p. 1007) we have G yielding

the clique V’ = {u, v, X, y} and < yielding the independent set V’ = {u, v, X, y}.

b) Not dome,

c) Tt can be observed that when each vertes in G has deeree 2, the graph s just a simple
cveles In this case, an independent set of maximum size can e obtained by starting
at any vertex and pleking each alternate vertese an the cyele until the size of the
indepedent set iz |[V]/2]. The running time of this algorithm g abvicusly O()V])
(or O E|) sinee [V| = |E] in this case)-

d) Using figure 26.7 on p.665, it can be seen that when graph G is bipartite, then
the I'J'LLET)F!I'L(J.FTLL-E#"’L (mzximum size) is the side with the larger mmbser of vertices
(the set of vertices in L). The running time will be OFV]).

10. Problem 35.2-2

For each combination of 3 vertices {(g)]l. caloulate r = e—a — b where ¢,a, b are the
ooat of the edges

I 2 < 0, dgnore. Otherwise Joeep track of (2 e Add (2 to the cost of each edge.
The mesulting traveling-galesperson problem (TSF) satigfies the triangle memuality iz,

c(u, w) < ¢(u, v) + ¢(v, w). Using the example from p.1013 (reproduced here in fig
6) we find that (X)nax = 5-1-2=2. Adding 2 to each edge yields the second graph in
fig 6 which satisfies the triangle inequality.Since the same number is added to each
adge, the two instances will have the same set of optimal tours. This transformation

takes polynomial time becse (g;] = Oin¥).

Figure 6: Triangular Inequalities

Now we explain why such a polynomial-time transformation does not contradict
theorem 35.3 (p. 1031), assuming that P # NP. The TSP with triangle inequality has
a polynomial-time approedmation algorithm with a matio bound g > 1 fe, ocost(A) <
g optl A), where opt(A) denotes the eost of an optimal tour for the TSP with triangle
inequality. So for the original TSP without triangle inequality (demoted e A) we ean
write eost(X) < g - opt(X) or est(A) — X|V] < plopt(A) — X[V]), where X ig the
oomstant added to each adge to eomvert to triangle nequality and henee Y|V is the total
inerease in cost for the triangle inequality TSP, The abowve equation can be vewritten
as eost(A) < p-optiA) = (p=1)0X|V] . which may or may not be true. Henee the
'h.-—q'p—n.l'
pogitive for g1
transformation does not contradict theorem 35.3.

11. Problem 35.2-3
Figure 7 shows how the closest-point heuristic works on the graph used in the example
on p. 1029.

From the manner in which nodes are added to the cycle in this heuristic, it can be
observed (comparing with figure 35.2 on p. 1029) that the final cycle has an inherent
MST within it and that its length will be less than the length of the full walk which
traverses every edge of the MST twice. Hence, from analysis in theorem 35.2 (p. 1030)
we have efelosest-point. heuristic) < e(w) and hemee efelosest-point heuristic) << 2e{ H™)
wheme of H7) is the cost of the optimal tour. Hemee the closest-point heuristie las a ration
bonmdd of 2.

12. Problem 35.2-4

Wi are wiven that the vertioes of the TSP are points in the plane and the eost o, v) is
the enclidean distance between point w and . g o fives an example whene the solid
lines indicate a TSP optimal tour. Using triange mequality, 2 <z +yand ¢ < a+ b
Hemee neplacing = + b and a + 9 with ¢ and 2 gives us a shorter wour which contradiets

the agsumption that the original tour was an optimal tour. Hemee an optimal tour will
never ¢ross iself

Figure 8: Traveling Salesperson Problem

13. Problem 35.3-1

Here X= {a,d,e,h,i,l,n,0,r,s,t,u} (see p. 1033-1034) and each of the given words is a
subset of X. The cover produced by GREEDY-SET-COVER when ties are broken in
favor of the womd appsears first in the dictionary is thread, lost, drain, shun.

14. Problem 35.3-2
The derision version of the set-covering problem is:

SET-COVER = {< X, F, &k =| et X has a st cover of size L}
where X and F are as defined on p. 1033.

To show that this problem is NP-pomplete, we first show that SET-COVER € NP,
Supmose we are given aset X, a family F ol subsets of X, and an integer k. The pertificate
we chooee is the set cover O C F itsell. The werification algorithm affirms that |CY) =k
(i, the numbser of subeets in C¥ = k) and then it chede whether each element of X g
im at east one of the subset of CY. This verification can be performed in polynomial time
(with a proof very similar to the vertex-cover problem proof on p. 1006).

We now prove that the set-covering problem is NP-hard by showing that VERTEX-
COVER x SET-COVER. The raduction is a divect mapping from VERTEX=COVELR to
SET-COVEIL

A =F ie, the elements of X in SET-COVER are the edges (iv) € F in VERTEX-
COVEIL

| F] = V] ie. the mpaber of subsets in the family F of subsets in SET-00VER is equal
1o the number of wertioss in VERTEX~0O0VER. where each subset containg the
elees from ome vertex in VERTEX-COVER.

Thus, it is obvious that a vertex oover of size § in VERTEX-COVELR is equivalent
o & set cover of size & in SET-COYVER where the subsets in the set oover cornesponsd to
the set of edges of the vertices In the vertex oover. In other words, the graph &' =(V, F)
has a vertey cover of sise b il and only if the set X has a set cover of gize k. The prood
starting fmom either side is obwions

